This repository has been archived by the owner on Dec 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
model 2 works but shitty results #192
- Loading branch information
Showing
3 changed files
with
134 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
source("scripts/r/common.r") | ||
source("scripts/r/ms3_common.r") | ||
|
||
# ---- Directories and files ---- | ||
output_dir <- "results/analysis/part3_network" | ||
octave_dir_base <- paste0(output_dir, "/mva") | ||
data_source_dir <- "results/replication" | ||
|
||
# ---- Helper function ---- | ||
normalise_request_log_df <- function(df) { | ||
|
||
first_request_time <- min(df$timeCreated) | ||
last_request_time <- max(df$timeCreated) | ||
DROP_TIMES_BEFORE = first_request_time + 2 * 60 * 1000 | ||
DROP_TIMES_AFTER = last_request_time - 2 * 60 * 1000 | ||
|
||
df2 <- df %>% filter(timeCreated > DROP_TIMES_BEFORE & | ||
timeCreated <= DROP_TIMES_AFTER) | ||
return(df2) | ||
} | ||
|
||
model_inputs <- function(requests, mss) { | ||
|
||
requests_get <- requests %>% filter(type == "GET") | ||
requests_set <- requests %>% filter(type == "SET") | ||
|
||
res <- list() | ||
res$tLB_get <- mean(requests_get$timeEnqueued-requests_get$timeCreated) | ||
res$tLB_set <- mean(requests_set$timeEnqueued-requests_set$timeCreated) | ||
res$tRW <- mean(requests_get$timeReturned-requests_get$timeDequeued) | ||
res$tWW <- mean(requests_set$timeForwarded-requests_set$timeDequeued) | ||
res$tMC <- mean(requests_set$timeReturned-requests_set$timeForwarded) | ||
|
||
rt_middleware_get <- mean(requests_get$timeReturned-requests_get$timeCreated) | ||
rt_middleware_set <- mean(requests_set$timeReturned-requests_set$timeCreated) | ||
rt_memaslap_get <- mss$mean_response_time_get | ||
rt_memaslap_set <- mss$mean_response_time_set | ||
|
||
res$tNW_get <- (rt_memaslap_get-rt_middleware_get)/2 | ||
res$tNW_set <- (rt_memaslap_set-rt_middleware_set)/2 | ||
|
||
return(res) | ||
} | ||
exp_dir <- "./results/replication/S5_R1_rep5" | ||
|
||
memaslap_file <- paste0(exp_dir, "/memaslap_stats.csv") | ||
requests_file <- paste0(exp_dir, "/request.log") | ||
|
||
# ---- Reading data ---- | ||
memaslap <- file_to_df(memaslap_file) %>% mutate(repetition=0) | ||
requests <- file_to_df(requests_file, sep=",") %>% | ||
normalise_request_log_df() | ||
requests_get <- requests %>% filter(type=="GET") | ||
requests_set <- requests %>% filter(type=="SET") | ||
|
||
# ---- Preprocessing ---- | ||
dir_name_regex <- paste0("/S(\\d)_R(\\d)_rep(\\d)$") | ||
result_params <- as.data.frame(str_match(exp_dir, dir_name_regex)) | ||
|
||
dir_name_end <- substr(result_params$V1, 2, | ||
nchar(as.character(result_params$V1))) | ||
num_servers = as.numeric(as.character(result_params$V2)) | ||
num_replication = as.numeric(as.character(result_params$V3)) | ||
num_repetition = result_params$V4 | ||
num_threads = 32 | ||
num_clients = 180 | ||
perc_writes = 5 | ||
prop_writes = perc_writes / 100 | ||
|
||
mss <- memaslap_summary(memaslap) %>% | ||
mutate(type="actual") | ||
|
||
inputs <- model_inputs(requests, mss) %>% as.data.frame() | ||
|
||
# ---- Model results ---- | ||
octave_output_dir <- paste0(octave_dir_base, "/model2/", dir_name_end) | ||
system(paste0("mkdir -p ", octave_output_dir)) | ||
octave_output_file <- paste0(octave_output_dir, "/results.mat") | ||
arg_list <- paste(octave_output_file, | ||
num_servers, num_replication, num_threads, num_clients, | ||
perc_writes, | ||
inputs$tNW_get, inputs$tNW_set, | ||
inputs$tLB_get, inputs$tLB_set, | ||
inputs$tWW, inputs$tRW, inputs$tMC, | ||
collapse=" ") | ||
system(paste0("octave scripts/oct/mva2_main.m ", arg_list)) | ||
mva <- readMat(octave_output_file) | ||
|
||
K <- ncol(mva$U) # number of nodes in the network | ||
ind_RW = 3:(3+num_servers-1) # ReadWorker devices | ||
ind_WW = (3+num_servers):(3+2*num_servers-1) # WriteWorker devices | ||
ind_MC = (3+2*num_servers):(K-1) | ||
|
||
predicted <- list() | ||
predicted$type <- "predicted" | ||
predicted$tps_mean <- sum(mva$X[1:2,1]) | ||
predicted$mean_response_time_get <- sum((mva$R * mva$V)[1,])*1000 | ||
predicted$mean_response_time_set <- sum((mva$R * mva$V)[2,])*1000 | ||
predicted$mean_response_time <- | ||
(1 - prop_writes) * predicted$mean_response_time_get + | ||
prop_writes / 100 * predicted$mean_response_time_set | ||
predicted$rt_rw <- sum((mva$R * mva$V)[,ind_RW])*1000 | ||
predicted$rt_ww_and_mc <- sum((mva$R * mva$V)[,c(ind_WW, ind_MC)])*1000 | ||
|
||
# ---- Actual results ---- | ||
tps_get <- (1-prop_writes) * mss$tps_mean # TODO this is an estimate -- could get precise! | ||
tps_set <- prop_writes * mss$tps_mean | ||
actual <- as.list(mss) | ||
actual$rt_rw <- mean(requests_get$timeReturned-requests_get$timeEnqueued) | ||
actual$rt_ww_and_mc <- mean(requests_set$timeReturned-requests_set$timeEnqueued) | ||
|
||
|
||
|
||
# ---- Analysis ---- | ||
|
||
comparison <- as.data.frame(actual) %>% | ||
select(-std_response_time) %>% | ||
rbind(as.data.frame(predicted)) %>% | ||
mutate(servers=num_servers, threads=num_threads, clients=num_clients, | ||
writes=perc_writes, replication=num_replication, | ||
repetition=num_repetition) | ||
comparison | ||
|
||
# Time breakdown: actual vs predicted | ||
data1 <- comparison %>% | ||
select(rt_rw, rt_ww_and_mc, type) %>% | ||
melt(id.vars=c("type")) | ||
|
||
ggplot(data1, aes(x=type, y=value, fill=type)) + | ||
geom_bar(stat="identity") + | ||
facet_wrap(~variable) + | ||
asl_theme |