Skip to content

Commit

Permalink
readme
Browse files Browse the repository at this point in the history
  • Loading branch information
tailuge committed Nov 25, 2024
1 parent 1b67287 commit a36298a
Showing 1 changed file with 43 additions and 10 deletions.
53 changes: 43 additions & 10 deletions dist/diagrams/forreadme.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,38 @@
Slip velocity at cushion contact point I

$$
ẋ_I = \dot{v_x} + \dot{\omega_y} R \sin \theta - \dot{\omega_z} R \cos \theta
$$

$$
ẏ'_I = -\dot{v_y} \sin \theta + \dot{\omega_x} R
$$

$$
\phi = \arctan\left(\frac{ẏ'_I}{ẋ_I}\right)
$$

$$
s = \sqrt{(ẋ_I)^2 + (ẏ'_I)^2}
$$

Slip velocity at table contact point C

$$
ẋ_C = \dot{v_x} - \dot{\omega_y} R
$$

$$
ẏ_C = \dot{v_y} + \dot{\omega_x} R
$$

$$
\phi' = \arctan\left(\frac{ẏ'_I}{ẋ_I}\right)
$$

$$
s' = \sqrt{(ẋ_C)^2 + (ẏ_C)^2}
$$

Numerical updates to the centroid velocity of the ball during compression and resititution phases.

Expand Down Expand Up @@ -25,24 +60,22 @@ $$
(\dot{\omega_z})_{n+1}−(\dot{\omega_z})_n = \frac{5}{2MR}(\mu_w \cos(\phi)\cos(\theta))\Delta P_I
$$

At each step recalculate the slip angle and speed at the cushion contact point (I) and the ball and surface of the table contact point (C)
$`\theta`$ is a constant of the angle of cushion contact above ball centre with $`\sin(\theta) = 2/5`$

### Slip velocity at cushion
Work done by the normal force at contact point $I$ along the $Z'$-axis

$$
ẋ_I = \dot{v_x} + \dot{\omega_y} R \sin \theta - \dot{\omega_z} R \cos \theta
W_{Z'}^I(P_I^{(n+1)}) = W_{Z'}^I(P_I^{(n)}) + \frac{\Delta P_I}{2} \left( z'_I(P_I^{(n+1)}) + z'_I(P_I^{(n)}) \right)
$$

$$
ẏ'_I = -\dot{v_y} \sin \theta + \dot{\omega_x} R
$$

### Slip velocity at table
The ball is assumed to be bouncing in the +y cushion. Compression phase iterates until

$$
ẋ_C = \dot{v_x} - \dot{\omega_y} R
\dot{v_y} <= 0
$$

For the restitution phase the iteration continues until the work done is

$$
ẏ_C = \dot{v_y} + \dot{\omega_x} R
W_{Z'}^I >= (1 - e_e^2) W_{compression}
$$

0 comments on commit a36298a

Please sign in to comment.