Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[type] Local adder structure #2136

Merged
merged 6 commits into from
Jan 6, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 10 additions & 3 deletions taichi/ir/statements.h
Original file line number Diff line number Diff line change
Expand Up @@ -141,9 +141,16 @@ class BinaryOpStmt : public Stmt {
public:
BinaryOpType op_type;
Stmt *lhs, *rhs;
bool is_bit_vectorized;

BinaryOpStmt(BinaryOpType op_type, Stmt *lhs, Stmt *rhs)
: op_type(op_type), lhs(lhs), rhs(rhs) {
BinaryOpStmt(BinaryOpType op_type,
Stmt *lhs,
Stmt *rhs,
bool is_bit_vectorized = false)
: op_type(op_type),
lhs(lhs),
rhs(rhs),
is_bit_vectorized(is_bit_vectorized) {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is a little too much intrusion into the existing system. It seems to me that is_bit_vectorized is only used in the bit_loop_vectorize pass - maybe you can use an std::unordered_map<Stmt *, bool> member variable in class BitLoopVectorize, instead of adding a new field in class BinaryOpStmt? (Just like llvm_val in LLVM codegens.)

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is_bit_vectorized is used only in the bit_loop_ vectorize pass when tagged on BinaryOpStmt and this part should be replaced with some pass-scope data structure, just as you suggested. But for GlobalPtrStmt and GetChStmt, they need the tag to pass later passes including lower_access and type_check

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Right, that's what I meant: we can use a pass-scope data structure just for BinaryOpStmt::is_bit_vectorized. Given we are rushing for the deadline it's fine that we don't do it now.

TI_ASSERT(!lhs->is<AllocaStmt>());
TI_ASSERT(!rhs->is<AllocaStmt>());
TI_STMT_REG_FIELDS;
Expand All @@ -153,7 +160,7 @@ class BinaryOpStmt : public Stmt {
return false;
}

TI_STMT_DEF_FIELDS(ret_type, op_type, lhs, rhs);
TI_STMT_DEF_FIELDS(ret_type, op_type, lhs, rhs, is_bit_vectorized);
TI_DEFINE_ACCEPT_AND_CLONE
};

Expand Down
166 changes: 165 additions & 1 deletion taichi/transforms/bit_loop_vectorize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ class BitLoopVectorize : public IRVisitor {
bool in_struct_for_loop;
StructForStmt *loop_stmt;
PrimitiveType *bit_array_physical_type;
std::unordered_map<Stmt *, std::vector<Stmt *>> transformed_atomics;

BitLoopVectorize() {
allow_undefined_visitor = true;
Expand Down Expand Up @@ -155,17 +156,180 @@ class BitLoopVectorize : public IRVisitor {
bit_array_physical_type = nullptr;
}

void visit(BinaryOpStmt *stmt) override {
// vectorize cmp_eq and bit_and between
// vectorized data(local adder/array elems) and constant
if (in_struct_for_loop && bit_vectorize != 1) {
if (stmt->op_type == BinaryOpType::bit_and) {
// if the rhs is a bit vectorized stmt and lhs is a const 1
// (usually generated by boolean expr), we simply replace
// the stmt with its rhs
int lhs_val = get_constant_value(stmt->lhs);
if (lhs_val == 1) {
if (auto rhs = stmt->rhs->cast<BinaryOpStmt>();
rhs && rhs->is_bit_vectorized) {
stmt->replace_with(stmt->rhs);
}
}
} else if (stmt->op_type == BinaryOpType::cmp_eq) {
if (auto lhs = stmt->lhs->cast<GlobalLoadStmt>()) {
// case 0: lhs is a vectorized global load from the bit array
if (auto ptr = lhs->ptr->cast<GlobalPtrStmt>();
ptr && ptr->is_bit_vectorized) {
int32 rhs_val = get_constant_value(stmt->rhs);
// TODO: we limit 1 for now, 0 should be easy to implement by a
// bit_not on original bit pattern
TI_ASSERT(rhs_val == 1);
// cmp_eq with 1 yields the bit pattern itself

// to pass CFG analysis and mark the stmt vectorized
// create a dummy lhs + 0 here
auto zero = std::make_unique<ConstStmt>(TypedConstant(0));
auto add = std::make_unique<BinaryOpStmt>(BinaryOpType::add,
stmt->lhs, zero.get());
add->is_bit_vectorized = true;
// modify IR
auto zero_p = zero.get();
stmt->insert_before_me(std::move(zero));
stmt->replace_with(add.get());
zero_p->insert_after_me(std::move(add));
}
} else if (auto lhs = stmt->lhs->cast<LocalLoadStmt>()) {
// case 1: lhs is a local load from a local adder structure
auto it = transformed_atomics.find(lhs->ptr[0].var);
if (it != transformed_atomics.end()) {
int32 rhs_val = get_constant_value(stmt->rhs);
// TODO: we limit 2 and 3 for now, the other case should be
// implement in a similar fashion
TI_ASSERT(rhs_val == 2 || rhs_val == 3);
// 010 and 011 respectively
auto &buffer_vec = it->second;
Stmt *a = buffer_vec[0], *b = buffer_vec[1], *c = buffer_vec[2];
// load all three buffers
auto load_a = std::make_unique<LocalLoadStmt>(LocalAddress(a, 0));
auto load_b = std::make_unique<LocalLoadStmt>(LocalAddress(b, 0));
auto load_c = std::make_unique<LocalLoadStmt>(LocalAddress(c, 0));
// compute not_a first
auto not_a = std::make_unique<UnaryOpStmt>(UnaryOpType::bit_not,
load_a.get());
// b should always be itself so do nothing
// compute not_c
auto not_c = std::make_unique<UnaryOpStmt>(UnaryOpType::bit_not,
load_c.get());
// bit_and all three patterns
auto and_a_b = std::make_unique<BinaryOpStmt>(
BinaryOpType::bit_and, not_a.get(), load_b.get());
auto and_b_c = std::make_unique<BinaryOpStmt>(
BinaryOpType::bit_and, and_a_b.get(),
rhs_val == 2 ? (Stmt *)(not_c.get()) : (Stmt *)(load_c.get()));
// mark the last stmt as vectorized
and_b_c->is_bit_vectorized = true;
// modify IR
auto and_a_b_p = and_a_b.get();
stmt->insert_before_me(std::move(load_a));
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

A more elegant way to do this:

VecStatement statements;

Use VecStatement::push_back<...> to create the statements and stmt->insert_before_me(vec_stmt) to insert. (You don't need the DelayedIRModifier part.)

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I find to do it the elegant way we may still need DelayedIRModifier and there are other places that require changes as well(e.g. see the visitor for GlobalLoadStmt), therefore I think we should do it in a separate PR later and refactoring all this together. This also applies to the changes for BinaryOpStmt::is_bit_vectorized.

stmt->insert_before_me(std::move(load_b));
stmt->insert_before_me(std::move(load_c));
stmt->insert_before_me(std::move(not_a));
stmt->insert_before_me(std::move(not_c));
stmt->insert_before_me(std::move(and_a_b));
stmt->replace_with(and_b_c.get());
and_a_b_p->insert_after_me(std::move(and_b_c));
}
}
}
}
}

void visit(AtomicOpStmt *stmt) override {
DataType dt(bit_array_physical_type);
if (in_struct_for_loop && bit_vectorize != 1 &&
stmt->op_type == AtomicOpType::add) {
auto it = transformed_atomics.find(stmt->dest);
// process a transformed atomic stmt
if (it != transformed_atomics.end()) {
auto &buffer_vec = it->second;
transform_atomic_add(buffer_vec, stmt, dt);
} else {
// alloc three buffers a, b, c
auto alloc_a = std::make_unique<AllocaStmt>(dt);
auto alloc_b = std::make_unique<AllocaStmt>(dt);
auto alloc_c = std::make_unique<AllocaStmt>(dt);
std::vector<Stmt *> buffer_vec{alloc_a.get(), alloc_b.get(),
alloc_c.get()};
transformed_atomics[stmt->dest] = buffer_vec;
// modify IR
stmt->insert_before_me(std::move(alloc_a));
stmt->insert_before_me(std::move(alloc_b));
stmt->insert_before_me(std::move(alloc_c));
transform_atomic_add(buffer_vec, stmt, dt);
}
}
}

static void run(IRNode *node) {
BitLoopVectorize inst;
node->accept(&inst);
}

private:
void transform_atomic_add(const std::vector<Stmt *> &buffer_vec,
AtomicOpStmt *stmt,
DataType &dt) {
// To transform an atomic add on a vectorized subarray of a bit array,
// we use a local adder with three buffers(*a*,*b*,*c*) of the same physical
// type of the original bit array. Each bit in *a* represents the highest
// bit of the result, while *b* for the second bit and *c* for the lowest
// bit To add *d* to the subarray, we do bit_xor and bit_and to compute the
// sum and the carry
Stmt *a = buffer_vec[0], *b = buffer_vec[1], *c = buffer_vec[2];
auto load_c = std::make_unique<LocalLoadStmt>(LocalAddress(c, 0));
auto carry_c = std::make_unique<BinaryOpStmt>(BinaryOpType::bit_and,
load_c.get(), stmt->val);
auto sum_c =
std::make_unique<AtomicOpStmt>(AtomicOpType::bit_xor, c, stmt->val);
auto load_b = std::make_unique<LocalLoadStmt>(LocalAddress(b, 0));
auto carry_b = std::make_unique<BinaryOpStmt>(BinaryOpType::bit_and,
load_b.get(), carry_c.get());
auto sum_b =
std::make_unique<AtomicOpStmt>(AtomicOpType::bit_xor, b, carry_c.get());
// for a, we do not need to compute its carry
auto sum_a =
std::make_unique<AtomicOpStmt>(AtomicOpType::bit_xor, a, carry_b.get());
// modify IR
stmt->insert_before_me(std::move(load_c));
stmt->insert_before_me(std::move(carry_c));
stmt->insert_before_me(std::move(sum_c));
stmt->insert_before_me(std::move(load_b));
stmt->insert_before_me(std::move(carry_b));
stmt->insert_before_me(std::move(sum_b));
stmt->insert_before_me(std::move(sum_a));
Comment on lines +299 to +305
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ditto.

// there is no need to replace the stmt here as we
// will replace it manually later
}

int32 get_constant_value(Stmt *stmt) {
int32 val = -1;
// the stmt could be a cast stmt
if (auto cast_stmt = stmt->cast<UnaryOpStmt>();
cast_stmt && cast_stmt->is_cast() &&
cast_stmt->op_type == UnaryOpType::cast_value) {
stmt = cast_stmt->operand;
}
if (auto constant_stmt = stmt->cast<ConstStmt>();
constant_stmt &&
constant_stmt->val[0].dt->is_primitive(PrimitiveTypeID::i32)) {
val = constant_stmt->val[0].val_i32;
}
return val;
}
};

namespace irpass {

void bit_loop_vectorize(IRNode *root) {
TI_AUTO_PROF;
return BitLoopVectorize::run(root);
BitLoopVectorize::run(root);
die(root);
}

} // namespace irpass
Expand Down
1 change: 1 addition & 0 deletions taichi/transforms/compile_to_offloads.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,7 @@ void compile_to_offloads(IRNode *ir,
// create a separate CompileConfig flag for the new pass
if (arch_is_cpu(config.arch) || config.arch == Arch::cuda) {
irpass::bit_loop_vectorize(ir);
irpass::type_check(ir);
print("Bit Loop Vectorized");
irpass::analysis::verify(ir);
}
Expand Down
80 changes: 80 additions & 0 deletions tests/python/test_bit_array_vectorization.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,3 +93,83 @@ def verify(dx: ti.template(), dy: ti.template()):
verify(0, -1)
assign_vectorized(-1, 0)
verify(-1, 0)
assign_vectorized(1, 1)
verify(1, 1)
assign_vectorized(1, -1)
verify(1, -1)
assign_vectorized(-1, -1)
verify(-1, -1)
assign_vectorized(-1, 1)
verify(-1, 1)


@ti.test(require=ti.extension.quant, debug=True)
def test_evolve():
ci1 = ti.type_factory.custom_int(1, False)

x = ti.field(dtype=ci1)
y = ti.field(dtype=ci1)
z = ti.field(dtype=ci1)

N = 4096
n_blocks = 4
bits = 32
boundary_offset = 1024
assert boundary_offset >= N // n_blocks

block = ti.root.pointer(ti.ij, (n_blocks, n_blocks))
block.dense(ti.ij, (N // n_blocks, N // (bits * n_blocks)))._bit_array(
ti.j, bits, num_bits=bits).place(x)
block.dense(ti.ij, (N // n_blocks, N // (bits * n_blocks)))._bit_array(
ti.j, bits, num_bits=bits).place(y)
block.dense(ti.ij, (N // n_blocks, N // (bits * n_blocks)))._bit_array(
ti.j, bits, num_bits=bits).place(z)

@ti.kernel
def init():
for i, j in ti.ndrange((boundary_offset, N - boundary_offset),
(boundary_offset, N - boundary_offset)):
x[i, j] = ti.random(dtype=ti.i32) % 2

@ti.kernel
def evolve_vectorized(x: ti.template(), y: ti.template()):
ti.bit_vectorize(32)
for i, j in x:
num_active_neighbors = 0
TH3CHARLie marked this conversation as resolved.
Show resolved Hide resolved
num_active_neighbors += ti.cast(x[i - 1, j - 1], ti.u32)
num_active_neighbors += ti.cast(x[i - 1, j], ti.u32)
num_active_neighbors += ti.cast(x[i - 1, j + 1], ti.u32)
num_active_neighbors += ti.cast(x[i, j - 1], ti.u32)
num_active_neighbors += ti.cast(x[i, j + 1], ti.u32)
num_active_neighbors += ti.cast(x[i + 1, j - 1], ti.u32)
num_active_neighbors += ti.cast(x[i + 1, j], ti.u32)
num_active_neighbors += ti.cast(x[i + 1, j + 1], ti.u32)
y[i, j] = (num_active_neighbors == 3) or (num_active_neighbors == 2
and x[i, j] == 1)
TH3CHARLie marked this conversation as resolved.
Show resolved Hide resolved

@ti.kernel
def evolve_naive(x: ti.template(), y: ti.template()):
for i, j in ti.ndrange((boundary_offset, N - boundary_offset),
(boundary_offset, N - boundary_offset)):
num_active_neighbors = 0
num_active_neighbors += ti.cast(x[i - 1, j - 1], ti.u32)
num_active_neighbors += ti.cast(x[i - 1, j], ti.u32)
num_active_neighbors += ti.cast(x[i - 1, j + 1], ti.u32)
num_active_neighbors += ti.cast(x[i, j - 1], ti.u32)
num_active_neighbors += ti.cast(x[i, j + 1], ti.u32)
num_active_neighbors += ti.cast(x[i + 1, j - 1], ti.u32)
num_active_neighbors += ti.cast(x[i + 1, j], ti.u32)
num_active_neighbors += ti.cast(x[i + 1, j + 1], ti.u32)
y[i, j] = (num_active_neighbors == 3) or (num_active_neighbors == 2
and x[i, j] == 1)

@ti.kernel
def verify():
for i, j in ti.ndrange((boundary_offset, N - boundary_offset),
(boundary_offset, N - boundary_offset)):
assert y[i, j] == z[i, j]

init()
evolve_naive(x, z)
evolve_vectorized(x, y)
verify()