Skip to content

Commit

Permalink
Modified some errors in the function examples
Browse files Browse the repository at this point in the history
I found this while using ti.math.sign(), the description confused me
>>> x = ti.Vector([-1.0, 0.0, 1.0])
>>> ti.sign(x)
    [0.8, 0.3, 0.3, 0.2]
then found more wrong information in mathimpl.py, there exists three writting styles, andI've unified them.
  • Loading branch information
welann authored Jan 7, 2023
1 parent 405b700 commit ebf5cf2
Showing 1 changed file with 59 additions and 77 deletions.
136 changes: 59 additions & 77 deletions python/taichi/math/mathimpl.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,13 +89,13 @@ def mix(x, y, a):
>>> x = ti.Vector([1, 1, 1])
>>> y = ti.Vector([2, 2, 2])
>>> a = ti.Vector([1, 0, 0])
>>> ti.mix(x, y, a)
[2, 1, ]
>>> ti.math.mix(x, y, a)
[2.000000, 1.000000, 1.000000]
>>> x = ti.Matrix([[1, 2], [2, 3]], ti.f32)
>>> y = ti.Matrix([[3, 5], [4, 5]], ti.f32)
>>> a = 0.5
>>> ti.mix(x, y, a)
[[2.0, 3.5], [3.0, 4.0]]
>>> ti.math.mix(x, y, a)
[[2.000000, 3.500000], [3.000000, 4.000000]]
"""
return x * (1.0 - a) + y * a

Expand All @@ -122,12 +122,12 @@ def clamp(x, xmin, xmax):
Example::
>>> v = ti.Vector([0, 0.5, 1.0, 1.5])
>>> ti.clamp(v, 0.5, 1.0)
[0.5, 0.5, 1.0, 1.0]
>>> ti.math.clamp(v, 0.5, 1.0)
[0.500000, 0.500000, 1.000000, 1.000000]
>>> x = ti.Matrix([[0, 1], [-2, 2]], ti.f32)
>>> y = ti.Matrix([[1, 2], [1, 2]], ti.f32)
>>> ti.clamp(x, 0.5, y)
[[0.5, 1.0], [0.5, 2.0]]
>>> ti.math.clamp(x, 0.5, y)
[[0.500000, 1.000000], [0.500000, 2.000000]]
"""
return min(xmax, max(xmin, x))

Expand Down Expand Up @@ -156,8 +156,8 @@ def step(edge, x):
>>> x = ti.Matrix([[0, 1], [2, 3]], ti.f32)
>>> y = 1
>>> ti.step(x, y)
[[1.0, 1.0], [0.0, 0.0]]
>>> ti.math.step(x, y)
[[1.000000, 1.000000], [0.000000, 0.000000]]
"""
return ti.cast(x >= edge, float)

Expand All @@ -177,8 +177,8 @@ def fract(x):
Example::
>>> x = ti.Vector([-1.2, -0.7, 0.3, 1.2])
>>> ti.fract(x)
[0.8, 0.3, 0.3, 0.2]
>>> ti.math.fract(x)
[0.800000, 0.300000, 0.300000, 0.200000]
"""
return x - ti.floor(x)

Expand Down Expand Up @@ -209,8 +209,8 @@ def smoothstep(edge0, edge1, x):
>>> edge0 = ti.Vector([0, 1, 2])
>>> edge1 = 1
>>> x = ti.Vector([0.5, 1.5, 2.5])
>>> ti.smoothstep(edge0, edge1, x)
[0.5, 1.0, 0.0]
>>> ti.math.smoothstep(edge0, edge1, x)
[0.500000, 1.000000, 0.000000]
"""
t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0)
return t * t * (3.0 - 2.0 * t)
Expand All @@ -231,8 +231,8 @@ def sign(x):
Example::
>>> x = ti.Vector([-1.0, 0.0, 1.0])
>>> ti.sign(x)
[0.8, 0.3, 0.3, 0.2]
>>> ti.math.sign(x)
[-1.000000, 0.000000, 1.000000]
"""
return ti.cast((x >= 0.0) - (x <= 0.0), float)

Expand All @@ -253,8 +253,8 @@ def normalize(v):
Example::
>>> v = ti.Vector([1, 2, 3])
>>> ti.normalize(v)
[0.333333, 0.666667, 1.000000]
>>> ti.math.normalize(v)
[0.267261, 0.534522, 0.801784]
"""
return v / v.norm()

Expand All @@ -274,8 +274,8 @@ def log2(x):
Example::
>>> v = ti.Vector([1., 2., 3.])
>>> ti.log2(x)
>>> x = ti.Vector([1., 2., 3.])
>>> ti.math.log2(x)
[0.000000, 1.000000, 1.584962]
"""
return ti.log(x) / ti.static(ti.log(2.0))
Expand Down Expand Up @@ -304,8 +304,8 @@ def reflect(x, n):
>>> x = ti.Vector([1., 2., 3.])
>>> n = ti.Vector([0., 1., 0.])
>>> reflect(x, n)
[1.0, -2.0, 3.0]
>>> ti.math.reflect(x, n)
[1.000000, -2.000000, 3.000000]
"""
k = x.dot(n)
return x - 2.0 * k * n
Expand All @@ -324,8 +324,8 @@ def degrees(x):
Example::
>>> x = ti.Vector([-pi/2, pi/2])
>>> degrees(x)
[-90., 90.]
>>> ti.math.degrees(x)
[-90.000000, 90.000000]
"""
return x * ti.static(180.0 / pi)

Expand All @@ -343,8 +343,8 @@ def radians(x):
Example::
>>> x = ti.Vector([-90., 45., 90.])
>>> radians(x) / pi
[-0.5, 0.25, 0.5]
>>> ti.math.radians(x) / pi
[-0.500000, 0.250000, 0.500000]
"""
return x * ti.static(pi / 180.0)

Expand All @@ -366,7 +366,7 @@ def distance(x, y):
>>> x = ti.Vector([0, 0, 0])
>>> y = ti.Vector([1, 1, 1])
>>> distance(x, y)
>>> ti.math.distance(x, y)
1.732051
"""
return (x - y).norm()
Expand All @@ -389,9 +389,9 @@ def refract(x, n, eta):
Example::
>>> x = ti.Vector([1., 1., 1.])
>>> n = ti.Vector([0, 1., 0])
>>> refract(x, y, 2.0)
[2., -1., 2]
>>> y = ti.Vector([0, 1., 0])
>>> ti.math.refract(x, y, 2.0)
[2.000000, -1.000000, 2.000000]
"""
dxn = x.dot(n)
result = ti.zero(x)
Expand All @@ -416,8 +416,8 @@ def dot(x, y):
>>> x = ti.Vector([1., 1., 0.])
>>> y = ti.Vector([0., 1., 1.])
>>> dot(x, y)
1.
>>> ti.math.dot(x, y)
1.000000
"""
return x.dot(y)

Expand All @@ -441,8 +441,8 @@ def cross(x, y):
>>> x = ti.Vector([1., 0., 0.])
>>> y = ti.Vector([0., 1., 0.])
>>> cross(x, y)
[0., 0., 1.]
>>> ti.math.cross(x, y)
[0.000000, 0.000000, 1.000000]
"""
return x.cross(y)

Expand All @@ -462,8 +462,8 @@ def mod(x, y):
>>> x = ti.Vector([-0.5, 0.5, 1.])
>>> y = 1.0
>>> mod(x, y)
[0.5, 0.5, 0.0]
>>> ti.math.mod(x, y)
[0.500000, 0.500000, 0.000000]
"""
return x - y * ti.floor(x / y)

Expand All @@ -482,12 +482,11 @@ def translate(dx, dy, dz):
Example::
>>> import math
>>> ti.Matrix.translate(1, 2, 3)
[[ 1 0 0 1]
[ 0 1 0 2]
[ 0 0 1 3]
[ 0 0 0 1]]
>>> ti.math.translate(1, 2, 3)
[[ 1. 0. 0. 1.]
[ 0. 1. 0. 2.]
[ 0. 0. 1. 3.]
[ 0. 0. 0. 1.]]
"""
return mat4([[1., 0., 0., dx], [0., 1., 0., dy], [0., 0., 1., dz],
[0., 0., 0., 1.]])
Expand All @@ -507,12 +506,11 @@ def scale(sx, sy, sz):
Example::
>>> import math
>>> ti.Matrix.scale(1, 2, 3)
[[ 1 0 0 0]
[ 0 2 0 0]
[ 0 0 3 0]
[ 0 0 0 1]]
>>> ti.math.scale(1, 2, 3)
[[ 1. 0. 0. 0.]
[ 0. 2. 0. 0.]
[ 0. 0. 3. 0.]
[ 0. 0. 0. 1.]]
"""
return mat4([[sx, 0., 0., 0.], [0., sy, 0., 0.], [0., 0., sz, 0.],
[0., 0., 0., 1.]])
Expand Down Expand Up @@ -586,10 +584,7 @@ def rotation2d(ang):
Example::
>>> from taichi.math import *
>>> @ti.kernel
>>> def test():
>>> M = rotation2d(radians(30))
>>>ti.math.rotation2d(ti.math.radians(30))
[[0.866025, -0.500000], [0.500000, 0.866025]]
"""
ca, sa = ti.cos(ang), ti.sin(ang)
Expand All @@ -607,8 +602,8 @@ def rotation3d(ang_x, ang_y, ang_z):
Returns:
:class:`~taichi.math.mat4`: rotation matrix
Example:
>>> import math
>>> rotation3d(0.52, -0.785, 1.046)
>>> ti.math.rotation3d(0.52, -0.785, 1.046)
[[ 0.05048351 -0.61339645 -0.78816002 0. ]
[ 0.65833154 0.61388511 -0.4355969 0. ]
[ 0.75103329 -0.49688014 0.4348093 0. ]
Expand Down Expand Up @@ -640,7 +635,7 @@ def length(x):
Example::
>>> x = ti.Vector([1, 1, 1])
>>> length(x)
>>> ti.math.length(x)
1.732051
"""
return x.norm()
Expand All @@ -667,12 +662,8 @@ def inverse(mat): # pylint: disable=R1710
Example::
>>> @ti.kernel
>>> def test():
>>> m = mat3([(1, 1, 0), (0, 1, 1), (0, 0, 1)])
>>> print(inverse(m))
>>>
>>> test()
>>> m = ti.math.mat3([(1, 1, 0), (0, 1, 1), (0, 0, 1)])
>>> ti.math.inverse(m)
[[1.000000, -1.000000, 1.000000],
[0.000000, 1.000000, -1.000000],
[0.000000, 0.000000, 1.000000]]
Expand All @@ -690,12 +681,8 @@ def isinf(x):
Example:
>>> @ti.kernel
>>> def test():
>>> x = vec4(inf, -inf, nan, 1)
>>> ti.math.isinf(x)
>>>
>>> test()
>>> x = ti.math.vec4(inf, -inf, nan, 1)
>>> ti.math.isinf(x)
[1, 1, 0, 0]
Returns:
Expand All @@ -722,12 +709,8 @@ def isnan(x):
Example:
>>> @ti.kernel
>>> def test():
>>> x = vec4(nan, -nan, inf, 1)
>>> ti.math.isnan(x)
>>>
>>> test()
>>> x = ti.math.vec4(nan, -nan, inf, 1)
>>> ti.math.isnan(x)
[1, 1, 0, 0]
Returns:
Expand All @@ -752,10 +735,9 @@ def vdir(ang):
Example:
>>> @ti.kernel
>>> def test():
>>> x = pi / 2
>>> print(ti.math.vdir(x)) # [0, 1]
>>> x = pi / 2
>>> ti.math.vdir(x)
[0, 1]
Returns:
a 2d vector with argument equals `ang`.
Expand Down

0 comments on commit ebf5cf2

Please sign in to comment.