Skip to content

Commit

Permalink
[Lang] Add ti.randn (#2266)
Browse files Browse the repository at this point in the history
* [Test] Update float64 random number test

* [LLVM] Update float64 random number generator

* [skip ci] enforce code format

* [test] simpifies test_random_f64 granularity test

* [Lang] Add ti.randn() for Gaussian random numbers

* [test] Add ti.randn() test

* [doc] add documentation for ti.randn()

* [skip ci] enforce code format

Co-authored-by: Taichi Gardener <[email protected]>
  • Loading branch information
victoriacity and taichi-gardener authored Apr 25, 2021
1 parent 939e1d3 commit 3711a04
Show file tree
Hide file tree
Showing 4 changed files with 57 additions and 4 deletions.
5 changes: 5 additions & 0 deletions docs/arithmetics.rst
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,11 @@ Random number generator

.. function:: ti.random(dtype = float)

Generates a uniform random float or integer number.

.. function:: ti.randn(dtype = None)

Generates a random floating point number from the standard normal distribution.

Element-wise arithmetics for vectors and matrices
-------------------------------------------------
Expand Down
10 changes: 8 additions & 2 deletions python/taichi/lang/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import os
from copy import deepcopy as _deepcopy

import taichi as ti
from taichi.core.util import ti_core as _ti_core
from taichi.lang import impl
from taichi.lang.impl import *
Expand All @@ -19,8 +20,6 @@
taichi_scope, to_numpy_type, to_pytorch_type,
to_taichi_type)

import taichi as ti

# TODO(#2223): Remove
core = _ti_core

Expand Down Expand Up @@ -290,6 +289,13 @@ def svd(A, dt=None):
return svd(A, dt)


def randn(dt=None):
if dt is None:
dt = impl.get_runtime().default_fp
from .random import randn
return randn(dt)


determinant = deprecated('ti.determinant(a)',
'a.determinant()')(Matrix.determinant)
tr = deprecated('ti.tr(a)', 'a.trace()')(Matrix.trace)
Expand Down
17 changes: 17 additions & 0 deletions python/taichi/lang/random.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
import math

import taichi as ti


@ti.func
def randn(dt):
'''
Generates a random number from standard normal distribution
using the Box-Muller transform.
'''
assert dt == ti.f32 or dt == ti.f64
u1 = ti.random(dt)
u2 = ti.random(dt)
r = ti.sqrt(-2 * ti.log(u1))
c = ti.cos(math.tau * u2)
return r * c
29 changes: 27 additions & 2 deletions tests/python/test_random.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ def fill():

fill()
X = x.to_numpy()
for i in range(4):
for i in range(1, 4):
assert (X**i).mean() == approx(1 / (i + 1), rel=1e-2)


Expand All @@ -44,7 +44,7 @@ def fill():

fill()
X = x.to_numpy()
for i in range(4):
for i in range(1, 4):
assert (X**i).mean() == approx(1 / (i + 1), rel=1e-2)


Expand Down Expand Up @@ -125,3 +125,28 @@ def foo() -> ti.f64:
foo()
frac, _ = np.modf(x.to_numpy() * 4294967296)
assert np.max(frac) > 0


@archs_support_random
def test_randn():
'''
Tests the generation of Gaussian random numbers.
'''
for precision in [ti.f32, ti.f64]:
ti.init()
n = 1024
x = ti.field(ti.f32, shape=(n, n))

@ti.kernel
def fill():
for i in range(n):
for j in range(n):
x[i, j] = ti.randn(precision)

fill()
X = x.to_numpy()

# https://en.wikipedia.org/wiki/Normal_distribution#Moments
moments = [0.0, 1.0, 0.0, 3.0]
for i in range(4):
assert (X**(i + 1)).mean() == approx(moments[i], abs=3e-2)

0 comments on commit 3711a04

Please sign in to comment.