Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* refactor NodeStore I'd like to add an alternative NodeStore that can be used when the `Type_then_ID` property is present in the PBF. First, a small (?) refactor: - make `NodeStore` an interface, with two concrete implementations - extract the NodeStore related things to their own files - this will cause some churn, as they'll depend on things that also need to get extracted to their own files. Short term pain, hopefully long term gain in faster compile times. Changing the invocations of the functions to be virtual may have impact on performance. Will need to revisit that before committing to virtual methods. * change how work is assigned for ReadPhase::Nodes Currently, when a worker needs work, it gets the next unprocessed block. This means blocks are read sequentially at a global level, but from the perspective of each worker, there are gaps in the blocks they see. For nodes, we'd prefer to give each worker thread contiguous blocks from the underlying PBF. This will enable a more efficient storage for PBFs with the `Sort.Type_then_ID` flag. * add SortedNodeStore SortedNodeStore is uesful for PBFs with the `Sort.Type_then_ID` property, e.g. the planet and Geofabrik exports. It stores nodes in a hierarchy: - Level 1 is groups: there are 256K groups - Level 2 is chunks: each group has 256 chunks - Level 3 is nodes: each chunk has 256 nodes This allows us to store 2^34 nodes, with a fixed overhead of only 2M -- the space required for the level 1 pointers. Groups and chunks store their data sparsely. If a group has 7 chunks, it only uses storage for 7 chunks. On Great Britain's 184M node PBF, it needs ~9.13 bytes per node. Looking up a node can be done in fixed time: First, get some offsets: - Group: `nodeID / 65536` - Chunk: `(nodeID / 65536) / 256` - Position within chunk: `nodeID % 256` For example, Cape Chignecto Provincial Park has ID 4855703, giving: - Group 74 - Chunk 23 - Offset 151 Group 74's chunks may be sparse. To map chunk 23 to its physical location, each group has a 256-bit bitmask indicating which chunks are present. Use its physical location to get its `chunkOffset`. That allows you to get to the `ChunkInfo` struct. From there, do the same thing to get the node data. This design should also let us do some interesting things down the road, like efficiently compressing each chunk using something like delta encoding, zigzag encoding and bit packing. Then, to avoid paying a decompression cost, we'd likely give each worker a cache of uncompressed chunks. * cmake build * tidy up * tweak * tweak * derp * mac/windows build * fix build? I don't understand why these can't be passed as a copy in the Windows and Mac builds. Whatever, try passing a reference. * fix --store I think nested containers may not be wired up quite correctly. Instead, manage the char* buffers directly, rather than as `std::vector<char>` I'll fixup the other aspects (attributing libpopcnt, picking Sorted vs BinarySearch on the fly) later * attribution for libpopcnt * simplify read_pbf All read phases use the same striding-over-batches-of-blocks approach. This required changing how progress is reported, as block IDs are no longer globally montonically increasing. Rather than thread the state into ReadBlock, I just adopted 2 atomic counters for the whole class -- the progress reporter already assumes that it's the only thing dumping to stdout, so the purity of avoiding class-global doesn't buy us anything. * clear allocatedMemory * use scale factor 16, not 8 D'oh, if you get a full group where each chunk is full, you need to be able to express a value _ever so slightly_ larger than 65,536. North America and Europe have examples of this. Use a scale factor of 16, not 8. This'll mean some chunks have up to 15 wasted bytes, but it's not a huge deal. (And I have some thoughts on how to claw it back.) * comment out debug stats * windows build * derp * use SortedNodeStore if PBFs have Sort.Type_then_ID * add --compress-nodes If the user passes `--compress-nodes`, we use [streamvbyte](https://github.com/lemire/streamvbyte) to compress chunks of nodes in memory. The impact on read time is not much: - GB with `--compress-nodes`: 1m42s - without: 1m35s But the impact on memory is worthwhile, even across very different extracts: North America - 5.52 bytes/node vs 8.48 bytes/node 169482 groups, 18364343 chunks, 1757589784 nodes, needed 9706167278 bytes 169482 groups, 18364343 chunks, 1757589784 nodes, needed 14916095182 bytes Great Britain - 5.97 bytes/node vs 9.25 bytes/node 163074 groups, 4871807 chunks, 184655287 nodes, needed 1104024510 bytes 163074 groups, 4871807 chunks, 184655287 nodes, needed 1708093150 bytes Nova Scota - 5.81 bytes/node vs 8.7 bytes/node 26777 groups, 157927 chunks, 12104733 nodes, needed 70337950 bytes 26777 groups, 157927 chunks, 12104733 nodes, needed 105367598 bytes Monaco - 10.43 bytes/node vs 13.52 bytes/node 1196 groups, 2449 chunks, 30477 nodes, needed 318114 bytes 1196 groups, 2449 chunks, 30477 nodes, needed 412258 bytes * build * build * remove __restrict__ to satisfy windows build * remove debug print, small memory optimization * use an arena for small groups * omit needless words * better short-circuiting for Type-then-ID PBFs Track metadata about which blocks have nodes, ways and relations. By default, we assume any block may contain nodes, ways or relations. If the PBF supports Type-then-ID PBFs, do a binary search to find the first blocks with ways and relations. This means ReadPhase::Nodes can stop without scanning ways/relations. In addition to avoiding needless work, it makes it easier to assign each worker a balanced amount of work -- now each worker has only blocks with nodes, which are about the same effort computationally. It also makes ReadPhase::ScanRelations faster, as it scans exactly the blocks with relations, skipping the blocks with ways. Similarly, ReadPhase::Ways is a bit faster, as it doesn't have to read the blocks with relations. For North America, this reduces the time to complete the Nodes and RelationsScan phase from 2m30s to 1m20s. For GB, it reduces the time from 22s to 9s. * ReadPhase::Relations - more parallelism When processing relations for small extracts, there are often fewer blocks than cores. Instead, divide the work more granularly, assigning each of the N threads 1/Nth of the block to process. This saves 4-5 seconds (which is cumulatively ~20% of runtime) for the Canadian province of Nova Scotia. * extract WayStore, BinarySearchWayStore * stub in SortedWayStore ...it just throws a lot of exceptions at the moment. * put SortedNodeStore in a namespace Also replace some `#define`s with `const`s. I'm likely going to reuse some names in SortedWayStore, so namespacing to avoid conflicts. * don't use SortedWayStore if LocationsOnWays present * stub in insertLatpLons/insertNodes * change at() to return a non mmap vector SortedWayStore won't create mmaped vectors, so we need to return the lowest common denominator. This pessimizes performance of BinarySearchWayStore, since it'll have to allocate vectors on demand. Longer term: it might be better to return an iterator that hides the heavy lifting. * begin drawing the rest of the owl * flesh out types * add unit test framework * naive encoding of ways Checkpointing since I have something that works. Future optimizations: - when all high ints are the same, don't encode them - compression * more efficient if high ints are all the same * extract mmap_allocator.cpp This is needed to unit test the way store without dragging in osm_store. * progress on publishGroup checkpointing, going to extract a populateMask(...) function * add populateMask function * finish publishGroup * SortedWayStore: implement at * pass node store into SortedWayStore * fix alignment * better logs * way stores should throw std::out_of_range This is part of the contract, client code will catch it and reject relations that have missing ways. * sortednodestore: throw std::out_of_range * support way compression * remove dead code, robust against empty ways * implement clear() * maybe fix windows build? very unclear why this is needed, but we seem to be getting C2131 on this line. * don't use variable-length arrays on stack Workaround for MSVC * avoid more variable-length arrays * make the other vectors as thread-local * --no-compress-ways, --no-compress-nodes
- Loading branch information