-
Notifications
You must be signed in to change notification settings - Fork 0
License
symbiotic-engineering/wec_array_opt
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Multi-Objective Multidisciplinary Optimization of Wave Energy Converter Array Layout and Controls Authors: Kapil Khanal, Nate DeGoede, Olivia Vitale, Maha Haji, - Multidisciplinary formulation to optimize the configuration of the array of Wave energy converter is presented. - Optimal controls for each Wave energy converter within the layout. - Regression model for interpretation of the trade-off between objectives for optimal designs prompts additional analysis. - Post optimality global sensitivity analysis of a set of optimal designs reveals that the expected variance in optimal LCOE (minimized) is very sensitive to the variance in wave frequency $(\omega)$ and interest rate. PROJECT STRUCTURE ├── __init__.py ├─data <- All relevant data. ├──── experiments <- Single objective experiments. │ ├─ grid.pdf,line.pdf,random.pdf │──── mesh_convergence <- data from mesh convergence │ ├─ convergence.csv │──── paretos <- dominant designs objective and dvs │ ├─ FinaldomDesign.csv , FinaldomObjective │──── sensitivities │ ├─ total.csv,first.csv,second.csv ├── notebooks <- nominal run --not required ├── src <- Main source code for MDO │ ├── modules <- Each python file is a disciplinary modules. │ ├── distances.py <- To find maximum and minimum spacing in array. │ ├── dynamics_contrrols.py <- Calculate motion and power of the WEC. │ ├── econ.py <- Calculates Capex / Opex and LCOE model. │ ├── hydro_terms.py <- Get all the hydro terms. (A,B,F,C,M) │ ├── model_nWECs.py <- Utility functions to call the multidisciplinary analysis (MDA) │ ├── wec_array_initialization.py <- Utility function to get array of bodies and their neighbors if required. │ ├── optimization_interfaces │ ├── multi_objective_opt.py <- Calls the optimizer for multi Objectives [J1,J2] │ ├── single_objective_opt.py <- Calls the optimizer for single Objective at a time. │ ├── post_pro │ ├── plots │ ├── *.pdf <- contains all the figures. │ ├── mesh_convergence.py <- Performs mesh convergence for the design │ ├── pareto_analysis.py <- Ad-hoc regression model for pareto design analysis │ ├── plot_design.py <- plots any designs │ ├── plot_pareto.py <- plots the pareto designs. │ ├── plot_qfactor.py <- plots the qfactor for pareto designs │ ├── plot_sensitivity.py <- plots the sensitivity of the design to the parameters │ ├── q.py <- Calculates thee q-factor │ ├── sensitivity.py <- Calculates the sensitivity upto second order. │ ├── wave_field.py <- plots the wave_field for optimal designs ├─ requirement.txt <- All the packages. ├─ environment.yml <- All the packages. Note: Run code from src folder.
About
No description, website, or topics provided.
Resources
License
Stars
Watchers
Forks
Packages 0
No packages published