by Yaqi Shen, Le Hui, Haobo Jiang, Jin Xie and Jian Yang, details are in paper.
This repository contains the source code and pre-trained models for RIENet (published on AAAI 2022).
-
Requirement:
- Hardware: GeForce_RTX_2080_Ti
- Software: PyTorch>=1.7.1, Python3, CUDA>=11.0, scipy>=1.5.4, tensorboardX, h5py, tqdm, easydict, yaml, sklearn, plyfile, MinkowskiEngine>=0.5
-
Clone the repository and build the ops:
git clone https://github.com/supersyq/RIENet.git cd RIENet cd pointnet2 && python setup.py install && cd ../
-
Datasets
(1) ModelNet40
(2) 7Scenes
7scene ├── 7-scenes-chess │ ├── cloud_bin_0.info.txt │ ├── cloud_bin_0.ply | ├── ... ├── 7-scenes-fire ├── ...
(3) ICL-NUIM
(4) KITTI
sequences ├── 00 │ ├── velodyne │ ├── calib.txt ├── 01 ├── ...
-
Train:
-
Modify the 'data_file_test', 'data_file', 'gaussian_noise', 'dataset-path', 'root', '' specified in folder 'config' and then do training:
CUDA_VISIBLE_DEVICES=0 python main.py ./config/train.yaml CUDA_VISIBLE_DEVICES=0 python main.py ./config/train7.yaml CUDA_VISIBLE_DEVICES=0 python main.py ./config/train-icl.yaml CUDA_VISIBLE_DEVICES=0 python main.py ./config/train-k.yaml
-
-
Test:
-
We provide pretrained models in
./pretrained
, please modifyeval
specified in folder 'config' and then do testing:CUDA_VISIBLE_DEVICES=0 python main.py ./config/train.yaml CUDA_VISIBLE_DEVICES=0 python main.py ./config/train7.yaml CUDA_VISIBLE_DEVICES=0 python main.py ./config/train-icl.yaml CUDA_VISIBLE_DEVICES=0 python main.py ./config/train-k.yaml
-
If you find the code or trained models useful, please consider citing:
@inproceedings{shen2022reliable,
title={Reliable Inlier Evaluation for Unsupervised Point Cloud Registration},
author={Shen, Yaqi and Hui, Le and Jiang, Haobo and Xie, Jin and Yang, Jian},
booktitle={AAAI},
year={2022}
}
Our code refers to DCP, RPMNet, FMR, DeepGMR, and HRegNet. We want to thank the above open-source projects.