Stable Version: v0.1.5(recommend to use.)
Automatic upload to PyPI has been finished.
This is toolbox project for Pytorch. Aiming to make you write Pytorch code more easier, readable and concise.
You could also regard this as a auxiliary tool for Pytorch. It will contain what you use most frequently tools.
- Pytorch-Toolbox
- Installing
- Todo
- Usage
- Tools
- Fashion work
- 1. LabelSmoothingLoss
- 2. CosineWarmupLr
- 3. SwitchNorm2d/3d
- 4. Swish activation
- 5. Lookahead optimizer
- 5. Mixup training
- 6. Cutout
- 7. No decay bias
- 8. Margin based classification loss
- 9. DCNv2
- 10. FocalLoss
- 11. SigmoidCrossEntropy
- 12. CircleLoss
- 13. EvoNrom
- 14. Activation Layer
- 15. Zero LastGamma Init
- 16. SGD_GC
- 17. Autoaugment
- Contribution
A easy way to install this is by using pip:
pip install torchtoolbox
If you want to install the nightly version:
pip install -U git+https://github.com/PistonY/torch-toolbox.git@master
- cv2 transforms.
- Integrate with albumentations
- Prepare tensorboard support with metric collection.
Toolbox have two mainly parts:
- Additional tools to make you use Pytorch easier.
- Some fashion work which don't exist in Pytorch core.
More examples could be found at ModelZoo.pytorch
Support as list:(need test)
__all__ = ["Compose", "ToTensor", "ToCVImage", "Normalize", "Resize", "Scale", "CenterCrop", "Pad",
"Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop", "RandomHorizontalFlip",
"RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop", "LinearTransformation",
"ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
"RandomPerspective", "RandomErasing", "RandomGaussianNoise", "RandomPoissonNoise", "RandomSPNoise",
"RandomTransforms", "Cutout"]
Part of this code refers to opencv_transforms_torchvision
- albumentations is also recommend to use which is cv2 backend transform tools.
import torch
from torchtoolbox.tools import summary
from torchvision.models.mobilenet import mobilenet_v2
model = mobilenet_v2()
summary(model, torch.rand((1, 3, 224, 224)))
Here are some short outputs.
Layer (type) Output Shape Params FLOPs(M+A) #
================================================================================
Conv2d-1 [1, 64, 112, 112] 9408 235225088
BatchNorm2d-2 [1, 64, 112, 112] 256 1605632
ReLU-3 [1, 64, 112, 112] 0 0
MaxPool2d-4 [1, 64, 56, 56] 0 0
... ... ... ...
Linear-158 [1, 1000] 1281000 2560000
MobileNetV2-159 [1, 1000] 0 0
================================================================================
Total parameters: 3,538,984 3.5M
Trainable parameters: 3,504,872
Non-trainable parameters: 34,112
Total flops(M) : 305,252,872 305.3M
Total flops(M+A): 610,505,744 610.5M
--------------------------------------------------------------------------------
Parameters size (MB): 13.50
When we train a model we usually need to calculate some metrics like accuracy(top1-acc), loss etc. Now toolbox support as below:
- Accuracy: top-1 acc.
- TopKAccuracy: topK-acc.
- NumericalCost: This is a number metric collection which support
mean
,max
,min
calculate type. - FeatureVerification.
- This is widely used in margin based algorithm.
from torchtoolbox import metric
# define first
top1_acc = metric.Accuracy(name='Top1 Accuracy')
top5_acc = metric.TopKAccuracy(top=5, name='Top5 Accuracy')
loss_record = metric.NumericalCost(name='Loss')
# reset before using
top1_acc.reset()
top5_acc.reset()
loss_record.reset()
...
model.eval()
for data, labels in val_data:
data = data.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
outputs = model(data)
losses = Loss(outputs, labels)
# update/record
top1_acc.update(outputs, labels)
top5_acc.update(outputs, labels)
loss_record.update(losses)
test_msg = 'Test Epoch {}: {}:{:.5}, {}:{:.5}, {}:{:.5}\n'.format(
epoch, top1_acc.name, top1_acc.get(), top5_acc.name, top5_acc.get(),
loss_record.name, loss_record.get())
print(test_msg)
Then you may get outputs like this
Test Epoch 101: Top1 Accuracy:0.7332, Top5 Accuracy:0.91514, Loss:1.0605
Now ToolBox support XavierInitializer
and KaimingInitializer
.
from torchtoolbox.nn.init import KaimingInitializer
model = XXX
initializer = KaimingInitializer()
model.apply(initializer)
Make Pytorch nn.Sequential
could handle multi input/output layer.
from torch import nn
from torchtoolbox.nn import AdaptiveSequential
import torch
class n_to_n(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 3, 1, 1, bias=False)
self.conv2 = nn.Conv2d(3, 3, 1, 1, bias=False)
def forward(self, x1, x2):
y1 = self.conv1(x1)
y2 = self.conv2(x2)
return y1, y2
class n_to_one(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 3, 1, 1, bias=False)
self.conv2 = nn.Conv2d(3, 3, 1, 1, bias=False)
def forward(self, x1, x2):
y1 = self.conv1(x1)
y2 = self.conv2(x2)
return y1 + y2
class one_to_n(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 3, 1, 1, bias=False)
self.conv2 = nn.Conv2d(3, 3, 1, 1, bias=False)
def forward(self, x):
y1 = self.conv1(x)
y2 = self.conv2(x)
return y1, y2
seq = AdaptiveSequential(one_to_n(), n_to_n(), n_to_one()).cuda()
td = torch.rand(1, 3, 32, 32).cuda()
out = seq(td)
print(out.size())
# output
# torch.Size([1, 3, 32, 32])
If you meet IO speed limit, you may think about LMDB format dataset. LMDB is a tiny database with some excellent properties.
Easy to generate a LMDB format dataset.
from torchtoolbox.tools.convert_lmdb import generate_lmdb_dataset, raw_reader
from torchvision.datasets import ImageFolder
dt = ImageFolder(..., loader=raw_reader)
save_dir = XXX
dataset_name = YYY
generate_lmdb_dataset(dt, save_dir=save_dir, name=dataset_name)
Then if you use ImageFolder
like dataset you can easily use ImageLMDB
to load you dataset.
from torchtoolbox.data import ImageLMDB
dt = ImageLMDB(db_path=save_dir, db_name=dataset_name, ...)
This dataset only return images.
More details please refers to codes
A Activation
Layer is provided to select a activation by string.
from torchtoolbox.nn import Activation
relu = Activation('relu', auto_optimize=True)
A FeatureVerification Metric
used to test feature based accuracy.
More details refers to code.
from torchtoolbox.nn import LabelSmoothingLoss
# The num classes of your task should be defined.
classes = 10
# Loss
Loss = LabelSmoothingLoss(classes, smoothing=0.1)
...
for i, (data, labels) in enumerate(train_data):
data = data.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
optimizer.zero_grad()
outputs = model(data)
# just use as usual.
loss = Loss(outputs, labels)
loss.backward()
optimizer.step()
Cosine lr scheduler with warm-up epochs.It's helpful to improve acc for classification models.
from torchtoolbox.optimizer import CosineWarmupLr
optimizer = optim.SGD(...)
# define scheduler
# `batches_pre_epoch` means how many batches(times update/step the model) within one epoch.
# `warmup_epochs` means increase lr how many epochs to `base_lr`.
# you can find more details in file.
lr_scheduler = CosineWarmupLr(optimizer, batches_pre_epoch, epochs,
base_lr=lr, warmup_epochs=warmup_epochs)
...
for i, (data, labels) in enumerate(train_data):
...
optimizer.step()
# remember to step/update status here.
lr_scheduler.step()
...
from torchtoolbox.nn import SwitchNorm2d, SwitchNorm3d
Just use it like Batchnorm2d/3d. More details please refer to origin paper Differentiable Learning-to-Normalize via Switchable Normalization OpenSourse
from torchtoolbox.nn import Swish
Just use it like Relu. More details please refer to origin paper SEARCHING FOR ACTIVATION FUNCTIONS
A wrapper optimizer seems better than Adam. Lookahead Optimizer: k steps forward, 1 step back
from torchtoolbox.optimizer import Lookahead
from torch import optim
optimizer = optim.Adam(...)
optimizer = Lookahead(optimizer)
Mixup method to train a classification model. mixup: BEYOND EMPIRICAL RISK MINIMIZATION
from torchtoolbox.tools import mixup_data, mixup_criterion
# set beta distributed parm, 0.2 is recommend.
alpha = 0.2
for i, (data, labels) in enumerate(train_data):
data = data.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
data, labels_a, labels_b, lam = mixup_data(data, labels, alpha)
optimizer.zero_grad()
outputs = model(data)
loss = mixup_criterion(Loss, outputs, labels_a, labels_b, lam)
loss.backward()
optimizer.update()
A image transform method. Improved Regularization of Convolutional Neural Networks with Cutout
from torchvision import transforms
from torchtoolbox.transform import Cutout
_train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
Cutout(),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(0.4, 0.4, 0.4),
transforms.ToTensor(),
normalize,
])
If you train a model with big batch size, eg. 64k, you may need this, Highly Scalable Deep Learning Training System with Mixed-Precision: Training ImageNet in Four Minutes
from torchtoolbox.tools import no_decay_bias
from torch import optim
model = XXX
parameters = no_decay_bias(model)
optimizer = optim.SGD(parameters, ...)
Now support:
- ArcLoss
- CosLoss
- L2Softmax
from torchtoolbox.nn.loss import ArcLoss, CosLoss, L2Softmax
You could use this like nn.CrossEntropyLoss
- Swish
- HardSwish
- HardSigmoid Usage:
from torchtoolbox.nn import Swish, HardSwish, HardSigmoid
swish = Swish()
hswish = HardSwish()
hsigmoid = HardSigmoid()
from torchtoolbox.nn.init import ZeroLastGamma
model == XXX
init = ZeroLastGamma(block_name='Bottleneck', bn_name='bn3')
model.apply(init)
Gradient Centralization: A New Optimization Technique for Deep Neural Networks
from torchtoolbox.optimizer import SGD_GC
optimizer = SGD_GC(model.parameters())
optimizer.zero_grad()
loss.backward()
optimizer.step()
# for ImageNet
from torchtoolbox.transform import ImageNetPolicy, Compose, \
RandomResizedCrop, RandomHorizontalFlip, ToTensor
transforms = Compose([RandomResizedCrop(224),
RandomHorizontalFlip(),
ImageNetPolicy,
ToTensor()])
Welcome pull requests and issues!!!