Skip to content

Multi-scale Adaptive Fusion Network for Hyperspectral Image Denoising, IEEE JSTARS 2023

Notifications You must be signed in to change notification settings

summitgao/MAFNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MAFNet

The implementation of IEEE JSTARS 2023 paper "Multi-scale Adaptive Fusion Network for Hyperspectral Image Denoising"

Results

  • Comparison of Quantitative Indicators

  • Comparison of Visual Quality

Configuration

  • Python =3.6.8, PyTorch = 1.9.0
  • Requirements: listed in requirements.txt
  • Platforms: Ubuntu 16.04.7 LTS x86_64, cuda-10.2

Quick Start

1. Prepare training/testing datasets

Training dataset

  • Download ICVL hyperspectral image database
  • Put the downloaded .mat file under the data/Mat_icvl, and it will be cropped with the specified step size to obtain training and validation dataset under the dataset_p_icvl.
  • The operation method of other data sets is the same as above

Testing dataset

  • Put the test data under the data/test path, read and modify the test.py file for model testing.

2. Testing with pretrained models

  • The trained model will be stored in the model path.

  • [Gaussian noise removal]:
    python3 test.py -pm './model/MAFNet_icvl_guass.pkl' -m 'MAFNet' -b 'no'-n 50

  • [Complex noise removal]:
    python3 test.py -pm './model/MAFNet_icvl_case.pkl' -m 'MAFNet' -b 'case5'

3. Training with incremental learning policy

  • Training a blind Gaussian model firstly by
    python3 main.py -d './data/dataset_p_icvl/' -mp './data/Mat_icvl/' -m 'MAFNet' -e 150 -b 'guass' -c 0 -dn 'icvl'

  • Using the pretrained Gaussian model as initialization to train a complex model:
    python3 main.py -d './data/dataset_p_icvl/' -mp './data/Mat_icvl/' -m 'MAFNet' -e 150 -b 'case5' -pm './model/MAFNet_icvl_guass.pkl' -c 0 -dn 'icvl'

Citation

If you find this work useful for your research, please cite:

@ARTICLE{mafnet23jstars,
  author={Pan, Haodong and Gao, Feng and Dong, Junyu and Du, Qian},
  journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, 
  title={Multi-Scale Adaptive Fusion Network for Hyperspectral Image Denoising}, 
  year={2023},
  pages={1-16},
  doi={10.1109/JSTARS.2023.3257051}}

Contact

Please contact me if there is any question ( [email protected] )

About

Multi-scale Adaptive Fusion Network for Hyperspectral Image Denoising, IEEE JSTARS 2023

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages