The implementation of IEEE JSTARS 2023 paper "Multi-scale Adaptive Fusion Network for Hyperspectral Image Denoising"
- Comparison of Quantitative Indicators
- Comparison of Visual Quality
- Python =3.6.8, PyTorch = 1.9.0
- Requirements: listed in
requirements.txt
- Platforms: Ubuntu 16.04.7 LTS x86_64, cuda-10.2
- Download ICVL hyperspectral image database
- Put the downloaded .mat file under the
data/Mat_icvl
, and it will be cropped with the specified step size to obtain training and validation dataset under thedataset_p_icvl
. - The operation method of other data sets is the same as above
- Put the test data under the
data/test
path, read and modify thetest.py
file for model testing.
-
The trained model will be stored in the
model
path. -
[Gaussian noise removal]:
python3 test.py -pm './model/MAFNet_icvl_guass.pkl' -m 'MAFNet' -b 'no'-n 50
-
[Complex noise removal]:
python3 test.py -pm './model/MAFNet_icvl_case.pkl' -m 'MAFNet' -b 'case5'
-
Training a blind Gaussian model firstly by
python3 main.py -d './data/dataset_p_icvl/' -mp './data/Mat_icvl/' -m 'MAFNet' -e 150 -b 'guass' -c 0 -dn 'icvl'
-
Using the pretrained Gaussian model as initialization to train a complex model:
python3 main.py -d './data/dataset_p_icvl/' -mp './data/Mat_icvl/' -m 'MAFNet' -e 150 -b 'case5' -pm './model/MAFNet_icvl_guass.pkl' -c 0 -dn 'icvl'
If you find this work useful for your research, please cite:
@ARTICLE{mafnet23jstars,
author={Pan, Haodong and Gao, Feng and Dong, Junyu and Du, Qian},
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
title={Multi-Scale Adaptive Fusion Network for Hyperspectral Image Denoising},
year={2023},
pages={1-16},
doi={10.1109/JSTARS.2023.3257051}}
Please contact me if there is any question ( [email protected] )