Skip to content

Commit

Permalink
bugfixing
Browse files Browse the repository at this point in the history
  • Loading branch information
MuslemRahimi committed Feb 22, 2025
1 parent 3b10635 commit e56b3d8
Showing 1 changed file with 18 additions and 50 deletions.
68 changes: 18 additions & 50 deletions app/cron_dividends.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,15 +24,6 @@ async def save_as_json(symbol, data, file_name):
with open(f"{file_name}/{symbol}.json", 'w') as file:
ujson.dump(data, file)

def delete_files_in_directory(directory):
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
try:
if os.path.isfile(file_path):
os.remove(file_path)
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")

async def get_data(ticker, con, etf_con, stock_symbols, etf_symbols):
try:
if ticker in etf_symbols:
Expand All @@ -57,63 +48,40 @@ async def get_data(ticker, con, etf_con, stock_symbols, etf_symbols):
res = dividend_data.get('historical', [])
filtered_res = [item for item in res if item['recordDate'] and item['paymentDate']]

# Dynamically compute the current and previous year based on New York timezone
current_year = str(datetime.now(ny_tz).year)
previous_year = str(datetime.now(ny_tz).year - 1)
# Get the current and previous year
today = datetime.today()
current_year = str(today.year)
previous_year = str(today.year - 1)

# Filter records for the current year
# Compute the previous year's total dividend (strictly based on last year)
previous_year_records = [item for item in filtered_res if previous_year in item['recordDate']]
previous_annual_dividend = round(sum(float(item['adjDividend']) for item in previous_year_records), 2) if previous_year_records else 0

# Estimate the payout frequency dynamically from the current year's dividends
current_year_records = [item for item in filtered_res if current_year in item['recordDate']]
dividends_current_year = [float(item['adjDividend']) for item in current_year_records]

# Compute the estimated payout frequency using the intervals between record dates
record_dates = []
for item in current_year_records:
try:
record_date = datetime.strptime(item['recordDate'], '%Y-%m-%d')
record_dates.append(record_date)
except Exception as e:
continue
record_dates.sort()
record_dates = sorted(
[datetime.strptime(item['recordDate'], '%Y-%m-%d') for item in current_year_records]
)

if len(record_dates) > 1:
total_days = (record_dates[-1] - record_dates[0]).days
intervals = len(record_dates) - 1
average_interval = total_days / intervals if intervals > 0 else None
estimated_frequency = round(365 / average_interval) if average_interval and average_interval > 0 else len(record_dates)
else:
# If there's only one record, assume weekly (52 payments) as a fallback;
# if no record exists, frequency remains 0.
estimated_frequency = 52 if record_dates else 0

# Project the annual dividend using the average dividend amount
if dividends_current_year:
avg_dividend = sum(dividends_current_year) / len(dividends_current_year)
annual_dividend = round(avg_dividend * estimated_frequency, 2)
else:
annual_dividend = 0

# For the previous year, assume the data is complete and sum the dividends
dividends_previous_year = [
float(item['adjDividend'])
for item in filtered_res
if previous_year in item['recordDate']
]
previous_annual_dividend = round(sum(dividends_previous_year), 2) if dividends_previous_year else 0
estimated_frequency = 52 if record_dates else 0 # Default to weekly if only one record exists

quote_data = orjson.loads(df['quote'].iloc[0])[0]
eps = quote_data.get('eps')
current_price = quote_data.get('price')

dividend_yield = round((annual_dividend / current_price) * 100, 2) if current_price else None
payout_ratio = round((1 - (eps - annual_dividend) / eps) * 100, 2) if eps else None
dividend_growth = (
round(((annual_dividend - previous_annual_dividend) / previous_annual_dividend) * 100, 2)
if previous_annual_dividend else None
)
dividend_yield = round((previous_annual_dividend / current_price) * 100, 2) if current_price else None
payout_ratio = round((1 - (eps - previous_annual_dividend) / eps) * 100, 2) if eps else None
dividend_growth = None # No calculation since we are strictly using the past year's data

return {
'payoutFrequency': estimated_frequency,
'annualDividend': annual_dividend,
'annualDividend': previous_annual_dividend, # Strictly using past year’s data
'dividendYield': dividend_yield,
'payoutRatio': payout_ratio,
'dividendGrowth': dividend_growth,
Expand All @@ -124,6 +92,7 @@ async def get_data(ticker, con, etf_con, stock_symbols, etf_symbols):
print(f"Error processing ticker {ticker}: {e}")
return {}


async def run():
con = sqlite3.connect('stocks.db')
cursor = con.cursor()
Expand All @@ -142,7 +111,6 @@ async def run():
res = await get_data(ticker, con, etf_con, stock_symbols, etf_symbols)
try:
if len(res.get('history', [])) > 0:
print(res)
await save_as_json(ticker, res, 'json/dividends/companies')
except Exception as e:
print(f"Error saving data for {ticker}: {e}")
Expand Down

0 comments on commit e56b3d8

Please sign in to comment.