Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sympy #219

Open
wants to merge 8 commits into
base: master
Choose a base branch
from
Open

Sympy #219

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -8,3 +8,4 @@ matplotlib
nbinteract
scipy
jupyter-book
sympy
3 changes: 3 additions & 0 deletions ngboost/.vscode/settings.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
{
"python.pythonPath": "D:\\src\\ngboost\\venv\\python.exe"
}
4 changes: 4 additions & 0 deletions ngboost/distns/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,3 +9,7 @@
from .normal import Normal, NormalFixedVar # NOQA
from .poisson import Poisson # NOQA
from .t import T, TFixedDf, TFixedDfFixedVar # NOQA
from .gamma import Gamma
from .beta import Beta
from .logitnormal import LogitNormal
from .betabernoulli import BetaBernoulli
83 changes: 83 additions & 0 deletions ngboost/distns/beta.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
import numpy as np
import numpy
import math
import scipy as sp
from scipy.stats import beta as dist
from scipy.special import polygamma, beta

from ngboost.distns.distn import RegressionDistn
from ngboost.scores import CRPScore, LogScore

import sympy as sym
from sympy import stats as symstats
from sympy.printing.lambdarepr import NumPyPrinter
from sympy.utilities.lambdify import lambdastr

logalpha, logbeta, x = sym.symbols('logalpha logbeta x')

distr = symstats.Beta('dist', sym.exp(logalpha), sym.exp(logbeta))
score = -sym.log(symstats.density( distr ).pdf(x))
def neg_loglikelihood_sympy(logalpha, logbeta, x):
return score

# Need to create str, because non-numpy functions are used: polygamma; and exp is not translated into numpy inside polygamma
def newlambdify(args, funs):
funcstr = lambdastr(args, funs, printer=NumPyPrinter)
funcstr = funcstr.replace(
' exp', 'numpy.exp'
)
return eval(funcstr)

neg_loglikelihood = np.vectorize( newlambdify((logalpha, logbeta, x), neg_loglikelihood_sympy(logalpha, logbeta, x)) )
D_0 = np.vectorize( newlambdify( (logalpha, logbeta, x), sym.diff(neg_loglikelihood_sympy(logalpha, logbeta, x), logalpha)) )
D_1 = np.vectorize( newlambdify( (logalpha, logbeta, x), sym.diff(neg_loglikelihood_sympy(logalpha, logbeta, x), logbeta)) )
# FI_0_0 = np.vectorize( newlambdify( (logalpha, logbeta), sym.factor(sym.expand(symstats.E(sym.factor(sym.expand(sym.diff(sym.diff(score, logalpha), logalpha))).subs(x, distr))))) )
# FI_0_1 = np.vectorize( newlambdify( (logalpha, logbeta), sym.factor(sym.expand(symstats.E(sym.factor(sym.expand(sym.diff(sym.diff(score, logalpha), logbeta))).subs(x, distr))))) )
# FI_1_0 = np.vectorize( newlambdify( (logalpha, logbeta), sym.factor(sym.expand(symstats.E(sym.factor(sym.expand(sym.diff(sym.diff(score, logbeta), logalpha))).subs(x, distr))))) )
# FI_1_1 = np.vectorize( newlambdify( (logalpha, logbeta), sym.factor(sym.expand(symstats.E(sym.factor(sym.expand(sym.diff(sym.diff(score, logbeta), logbeta))).subs(x, distr))))) )



class BetaLogScore(LogScore):

def score(self, Y):
return -dist.logpdf(Y, a=self.alpha, b=self.beta, loc=0, scale=1)
# return neg_loglikelihood(k=self.a, logtheta=self.logscale, x=Y)

def d_score(self, Y):
D = np.zeros((len(Y), 2)) # first col is dS/da, second col is dS/d(log(scale))
D[:, 0] = D_0(logalpha=self.logalpha, logbeta=self.logbeta, x=Y)
D[:, 1] = D_1(logalpha=self.logalpha, logbeta=self.logbeta, x=Y)
return D

class Beta(RegressionDistn):

n_params = 2
scores = [BetaLogScore]

def __init__(self, params):
# save the parameters
self._params = params

# create other objects that will be useful later
self.logalpha = params[0]
self.logbeta = params[1]
self.alpha = np.exp(params[0])
self.beta = np.exp(params[1]) # since params[1] is log(scale)
self.dist = dist(a=self.alpha, b=self.beta)

def fit(Y):
alpha, beta, loc1, scale1 = dist.fit(Y, floc=0, fscale=1) # use scipy's implementation
return np.array([np.log(alpha), np.log(beta)])

def sample(self, m):
return np.array([self.dist.rvs() for i in range(m)])

def __getattr__(self, name): # gives us access to Laplace.mean() required for RegressionDist.predict()
if name in dir(self.dist):
return getattr(self.dist, name)
return None

@property
def params(self):
return {'alpha':self.alpha, 'beta':self.beta}
180 changes: 180 additions & 0 deletions ngboost/distns/betabernoulli.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,180 @@
from scipy.stats import betabinom as dist
import numpy as np
from ngboost.distns.distn import RegressionDistn
from ngboost.scores import LogScore
from scipy.special import digamma, polygamma
from array import array
import sys

class BetaBernoulliLogScore(LogScore):
def score(self, Y):
return -self.dist.logpmf(Y)

def d_alpha(self, Y):
return self.alpha * (
digamma(self.alpha + self.beta)
+ digamma(Y + self.alpha)
- digamma(self.alpha + self.beta + 1)
- digamma(self.alpha)
)

def d_beta(self, Y):
return self.beta * (
digamma(self.alpha + self.beta)
+ digamma(-Y + self.beta + 1)
- digamma(self.alpha + self.beta + 1)
- digamma(self.beta)
)

def d_alpha_alpha(self, Y):
return (
(polygamma(1, Y + self.alpha) +
polygamma(1, self.alpha + self.beta) -
polygamma(1, self.alpha + self.beta + 1) -
polygamma(1, self.alpha)
) * self.alpha**2 + self.d_alpha(Y)
)

def d_alpha_beta(self, Y):
return (
self.alpha * self.beta * (
polygamma(1, self.alpha + self.beta) -
polygamma(1, self.alpha + self.beta + 1)
)
)

def d_beta_beta(self, Y):
return (
(polygamma(1, -Y + self.beta + 1) +
polygamma(1, self.alpha + self.beta) -
polygamma(1, self.alpha + self.beta + 1) -
polygamma(1, self.beta)
) * self.beta**2 + self.d_beta(Y)
)
def d_score(self, Y):
D = np.zeros(
(len(Y), 2)
) # first col is dS/d(log(α)), second col is dS/d(log(β))
D[:, 0] = -self.d_alpha(Y)
D[:, 1] = -self.d_beta(Y)
return D

# Variance
def metric(self):
FI = np.zeros((self.alpha.shape[0], 2, 2))
FI[:, 0, 0] = (
self.d_alpha(0)*self.d_alpha(0)*self.dist.pmf(0) +
self.d_alpha(1)*self.d_alpha(1)*self.dist.pmf(1)
)
# FI[:, 1, 0] = (
# self.d_alpha(0)*self.d_beta(0)*self.dist.pmf(0) +
# self.d_alpha(1)*self.d_beta(1)*self.dist.pmf(1)
# )
# FI[:, 0, 1] = (
# self.d_alpha(0)*self.d_beta(0)*self.dist.pmf(0) +
# self.d_alpha(1)*self.d_beta(1)*self.dist.pmf(1)
# )
FI[:, 1, 1] = (
self.d_beta(0)*self.d_beta(0)*self.dist.pmf(0) +
self.d_beta(1)*self.d_beta(1)*self.dist.pmf(1)
)
return FI

# Hessian
# def metric(self):
# FI = np.zeros((self.alpha.shape[0], 2, 2))
# FI[:, 0, 0] = self.d_alpha_alpha(0) * self.dist.pmf(0) + self.d_alpha_alpha(1) * self.dist.pmf(1)
# # FI[:, 1, 0] = self.d_alpha_beta(0) * self.dist.pmf(0) + self.d_alpha_beta(1) * self.dist.pmf(1)
# # FI[:, 0, 1] = self.d_alpha_beta(0) * self.dist.pmf(0) + self.d_alpha_beta(1) * self.dist.pmf(1)
# FI[:, 1, 1] = self.d_beta_beta(0) * self.dist.pmf(0) + self.d_beta_beta(1) * self.dist.pmf(1)
# return FI

class BetaBernoulli(RegressionDistn):

n_params = 2
scores = [BetaBernoulliLogScore]

def __init__(self, params):
# save the parameters
self._params = params

# create other objects that will be useful later
self.log_alpha = params[0]
self.log_beta = params[1]
self.alpha = np.exp(self.log_alpha)
self.beta = np.exp(self.log_beta)
self.dist = dist(n=1, a=self.alpha, b=self.beta)

def fit(Y):
def fit_alpha_beta_py(success, alpha0=1.5, beta0=5, niter=1000):
# based on https://github.com/lfiaschi/fastbetabino/blob/master/fastbetabino.pyx

# This optimisation works for Beta-Binomial distribution in general.
# For Beta-Bernoulli it's simplified by fixing the trials to 1.
trials = np.ones_like(Y)

alpha_old = alpha0
beta_old = beta0

for it in range(niter):

alpha = (
alpha_old
* (
sum(
digamma(c + alpha_old) - digamma(alpha_old)
for c, i in zip(success, trials)
)
)
/ (
sum(
digamma(i + alpha_old + beta_old)
- digamma(alpha_old + beta_old)
for c, i in zip(success, trials)
)
)
)

beta = (
beta_old
* (
sum(
digamma(i - c + beta_old) - digamma(beta_old)
for c, i in zip(success, trials)
)
)
/ (
sum(
digamma(i + alpha_old + beta_old)
- digamma(alpha_old + beta_old)
for c, i in zip(success, trials)
)
)
)

# print('alpha {} | {} beta {} | {}'.format(alpha,alpha_old,beta,beta_old))
sys.stdout.flush()

if np.abs(alpha - alpha_old) and np.abs(beta - beta_old) < 1e-10:
# print('early stop')
break

alpha_old = alpha
beta_old = beta

return alpha, beta

alpha, beta = fit_alpha_beta_py(Y)
return np.array([np.log(alpha), np.log(beta)])

def sample(self, m):
return np.array([self.dist.rvs() for i in range(m)])

def __getattr__(self, name):
if name in dir(self.dist):
return getattr(self.dist, name)
return None

@property
def params(self):
return {"alpha": self.alpha, "beta": self.beta}
Loading