-
Notifications
You must be signed in to change notification settings - Fork 1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
error in autoplot multi-dist #385
Comments
#' Automatic Plot of Multi Dist Data
#'
#' @family Autoplot
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This function will spit out one of the following plots:
#' - `density`
#' - `quantile`
#' - `probability`
#' - `qq`
#'
#' @description This is an auto plotting function that will take in a `tidy_`
#' distribution function and a few arguments, one being the plot type, which is
#' a quoted string of one of the following:
#' - `density`
#' - `quantile`
#' - `probablity`
#' - `qq`
#'
#' If the number of simulations exceeds 9 then the legend will not print. The plot
#' subtitle is put together by the attributes of the table passed to the function.
#'
#' @param .data The data passed in from a the function `tidy_multi_dist()`
#' @param .plot_type This is a quoted string like 'density'
#' @param .line_size The size param ggplot
#' @param .geom_point A Boolean value of TREU/FALSE, FALSE is the default. TRUE
#' will return a plot with `ggplot2::ggeom_point()`
#' @param .point_size The point size param for ggplot
#' @param .geom_rug A Boolean value of TRUE/FALSE, FALSE is the default. TRUE
#' will return the use of `ggplot2::geom_rug()`
#' @param .geom_smooth A Boolean value of TRUE/FALSE, FALSE is the default. TRUE
#' will return the use of `ggplot2::geom_smooth()` The `aes` parameter of group is
#' set to FALSE. This ensures a single smoothing band returned with SE also set to
#' FALSE. Color is set to 'black' and `linetype` is 'dashed'.
#' @param .geom_jitter A Boolean value of TRUE/FALSE, FALSE is the default. TRUE
#' will return the use of `ggplot2::geom_jitter()`
#' @param .interactive A Boolean value of TRUE/FALSE, FALSE is the default. TRUE
#' will return an interactive `plotly` plot.
#'
#' @examples
#' tn <- tidy_multi_single_dist(
#' .tidy_dist = "tidy_normal",
#' .param_list = list(
#' .n = 500,
#' .mean = c(-2, 0, 2),
#' .sd = 1,
#' .num_sims = 5,
#' .return_tibble = TRUE
#' )
#' )
#'
#' tn %>%
#' tidy_multi_dist_autoplot()
#'
#' tn %>%
#' tidy_multi_dist_autoplot(.plot_type = "qq")
#'
#' @return
#' A ggplot or a plotly plot.
#'
#' @export
#'
tidy_multi_dist_autoplot <- function(.data, .plot_type = "density", .line_size = .5,
.geom_point = FALSE, .point_size = 1,
.geom_rug = FALSE, .geom_smooth = FALSE,
.geom_jitter = FALSE, .interactive = FALSE) {
# Plot type ----
plot_type <- tolower(as.character(.plot_type))
line_size <- as.numeric(.line_size)
point_size <- as.numeric(.point_size)
# Get the data attributes
atb <- attributes(.data)
ns <- atb$.param_list$.num_sims
ps <- attributes(.data)$all$ps
ps <- rep(ps, (ns * nrow(expand.grid(atb$.param_list))))
qs <- attributes(.data)$all$qs
qs <- rep(qs, (ns * nrow(expand.grid(atb$.param_list))))
# Checks on data ---
if (!is.data.frame(.data)) {
rlang::abort("The .data parameter must be a valid data.frame from a `tidy_`
distribution function. ")
}
if (!atb$tbl == "tidy_multi_tibble") {
rlang::abort("The data passed must come from the `tidy_multi_dist()` function.")
}
if (!attributes(.data)$all$tibble_type %in% c(
"tidy_gaussian", "tidy_poisson", "tidy_gamma", "tidy_beta", "tidy_f",
"tidy_hypergeometric", "tidy_lognormal", "tidy_cauchy", "tidy_chisquare",
"tidy_weibull", "tidy_uniform", "tidy_logistic", "tidy_exponential",
"tidy_empirical", "tidy_binomial", "tidy_geometric", "tidy_negative_binomial",
"tidy_zero_truncated_poisson", "tidy_zero_truncated_geometric",
"tidy_zero_truncated_binomial", "tidy_zero_truncated_negative_binomial",
"tidy_pareto_single_parameter", "tidy_pareto", "tidy_inverse_pareto",
"tidy_generalized_pareto", "tidy_paralogistic", "tidy_inverse_exponential",
"tidy_inverse_gamma", "tidy_inverse_weibull", "tidy_burr", "tidy_inverse_burr",
"tidy_inverse_gaussian", "tidy_generalized_beta", "tidy_t","tidy_bernoulli",
"tidy_triangular"
)) {
rlang::abort("The data passed must come from a `tidy_` distribution function.")
}
if (!is.numeric(.line_size) | !is.numeric(.point_size) | .line_size < 0 | .point_size < 0) {
rlang::abort("The parameters .line_size and .point_size must be numeric and
greater than 0.")
}
if (!plot_type %in% c("density", "quantile", "probability", "qq", "mcmc")) {
rlang::abort("You have chose an unsupported plot type.")
}
# Get .data parameters from the tidy_ function to construct subtitle
# for ggplot
n <- atb$all$.n
sims <- atb$.num_sims
sub_title <- paste0(
"Data Points: ", n, " - ",
"Simulations: ", sims, "\n",
"Parameters: ", if (atb$all$tibble_type == "tidy_gaussian") {
paste0("Mean: ", toString(atb$.param_list$.mean), " - SD: ", toString(atb$.param_list$.sd))
} else if (atb$all$tibble_type == "tidy_gamma") {
paste0("Shape: ", toString(atb$.param_list$.shape), " - Scale: ", toString(atb$.param_list$.scale))
} else if (atb$all$tibble_type == "tidy_beta") {
paste0("Shape1: ", toString(atb$.param_list$.shape1), " - Shape2: ", toString(atb$.param_list$.shape2), " - NCP: ", toString(atb$.param_list$.ncp))
} else if (atb$all$tibble_type %in% c("tidy_poisson", "tidy_zero_truncated_poisson")) {
paste0("Lambda: ", toString(atb$.param_list$.lambda))
} else if (atb$all$tibble_type == "tidy_f") {
paste0("DF1: ", toString(atb$.param_list$.df1), " - DF2: ", toString(atb$.param_list$.df2), " - NCP: ", toString(atb$.param_list$.ncp))
} else if (atb$all$tibble_type == "tidy_hypergeometric") {
paste0("M: ", toString(atb$.param_list$.m), " - NN: ", toString(atb$.param_list$.nn), " - K: ", toString(atb$.param_list$.k))
} else if (atb$all$tibble_type == "tidy_lognormal") {
paste0("Mean Log: ", toString(atb$.param_list$.meanlog), " - SD Log: ", toString(atb$.param_list$.sdlog))
} else if (atb$all$tibble_type == "tidy_cauchy") {
paste0("Location: ", toString(atb$.param_list$.location), " - Scale: ", toString(atb$.param_list$.scale))
} else if (atb$all$tibble_type %in% c("tidy_chisquare", "tidy_t")) {
paste0("DF: ", toString(atb$.param_list$.df), " - NPC: ", toString(atb$.param_list$.ncp))
} else if (atb$all$tibble_type == "tidy_weibull") {
paste0("Shape: ", toString(atb$.param_list$.schape), " - Scale: ", toString(atb$.param_list$.scale))
} else if (atb$all$tibble_type == "tidy_uniform") {
paste0("Max: ", toString(atb$.param_list$.max), " - Min: ", toString(atb$.param_list$.min))
} else if (atb$all$tibble_type == "tidy_logistic") {
paste0("Location: ", toString(atb$.param_list$.location), " - Scale: ", toString(atb$.param_list$.scale))
} else if (atb$all$tibble_type == "tidy_exponential") {
paste0("Rate: ", toString(atb$.param_list$.rate))
} else if (atb$all$tibble_type == "tidy_empirical") {
paste0("Empirical - No params")
} else if (atb$all$tibble_type %in% c(
"tidy_binomial", "tidy_negative_binomial",
"tidy_zero_truncated_binomial",
"tidy_zero_truncated_negative_binomial"
)) {
paste0("Size: ", toString(atb$.param_list$.size), " - Prob: ", toString(atb$.param_list$.prob))
} else if (atb$all$tibble_type %in% c("tidy_geometric", "tidy_zero_truncated_geometric",
"tidy_bernoulli")) {
paste0("Prob: ", toString(atb$.param_list$.prob))
} else if (atb$all$tibble_type %in% c("tidy_pareto_single_parameter")) {
paste0("Shape: ", toString(atb$.param_list$.shape), " - Min: ", toString(atb$.param_list$.min))
} else if (atb$all$tibble_type %in% c("tidy_pareto", "tidy_inverse_pareto")) {
paste0("Shape: ", toString(atb$.param_list$.shape), " - Scale: ", toString(atb$.param_list$.scale))
} else if (atb$all$tibble_type %in% c(
"tidy_generalized_pareto",
"tidy_burr", "tidy_inverse_burr"
)) {
paste0(
"Shape1: ", toString(atb$.param_list$.shape1), " - ",
"Shape2: ", toString(atb$.param_list$.shape2), " - ",
"Rate: ", toString(atb$.param_list$.rate), " - ",
"Scale: ", toString(atb$.param_list$.scale)
)
} else if (atb$all$tibble_type %in% c(
"tidy_paralogistic",
"tidy_inverse_gamma",
"tidy_inverse_weibull"
)
) {
paste0(
"Shape: ", toString(atb$.param_list$.shape), " - ",
"Rate: ", toString(atb$.param_list$.rate), " - ",
"Scale: ", toString(atb$.param_list$.scale)
)
} else if (atb$all$tibble_type == "tidy_inverse_exponential") {
paste0("Rate: ", toString(atb$.param_list$.rate), " - Scale: ", toString(atb$.param_list$.scale))
} else if (atb$all$tibble_type == "tidy_inverse_gaussian") {
paste0(
"Mean: ", toString(atb$.param_list$.mean), " - ",
"Shape: ", toString(atb$.param_list$.shape), " - ",
"Dispersion: ", toString(atb$.param_list$.dispersion)
)
} else if (atb$all$tibble_type == "tidy_generalized_beta") {
paste0(
"Shape1: ", toString(atb$.param_list$.shape1), " - ",
"Shape2: ", toString(atb$.param_list$.shape2), " - ",
"Shape3: ", toString(atb$.param_list$.shape3), " - ",
"Scale: ", toString(atb$.param_list$.scale), " - ",
"Rate: ", toString(atb$.param_list$.rate)
)
} else if (atb$tibble_type == "tidy_triangular") {
paste0(
"Min: ", atb$.min, " - ",
"Max: ", atb$.max, " - ",
"Mode: ", atb$.mode
)
}
)
# Data ----
data_tbl <- dplyr::as_tibble(.data)
# Plot logic ----
leg_pos <- if (atb$all$tibble_type == "tidy_empirical") {
"none"
} else if (sims > 9) {
"none"
} else {
"bottom"
}
if (plot_type == "density" & atb$all$distribution_family_type == "continuous") {
plt <- data_tbl %>%
ggplot2::ggplot(
ggplot2::aes(x = dx, y = dy, group = interaction(dist_name, sim_number), color = dist_name)
) +
ggplot2::geom_line(size = line_size) +
ggplot2::theme_minimal() +
ggplot2::labs(
title = "Density Plot",
subtitle = sub_title,
color = "Simulation"
) +
ggplot2::theme(legend.position = leg_pos)
} else if (plot_type == "density" & atb$all$distribution_family_type == "discrete") {
plt <- data_tbl %>%
ggplot2::ggplot(
ggplot2::aes(x = y, group = interaction(dist_name, sim_number), fill = dist_name)
) +
ggplot2::geom_histogram(
alpha = 0.318, color = "#e9ecef", bins = max(unique(data_tbl$y)) + 1,
position = "identity"
) +
ggplot2::theme_minimal() +
ggplot2::labs(
title = "Histogram Plot",
subtitle = sub_title,
fill = "Simulation"
) +
ggplot2::theme(legend.position = leg_pos)
} else if (plot_type == "quantile") {
## EDIT
data_tbl <- data_tbl %>%
dplyr::select(sim_number, dist_name, q) %>%
dplyr::group_by(sim_number, dist_name) %>%
dplyr::arrange(q) %>%
dplyr::mutate(x = 1:dplyr::n()) %>%
dplyr::ungroup()
## End EDIT
plt <- data_tbl %>%
ggplot2::ggplot(
ggplot2::aes(
x = x, y = q, group = interaction(dist_name, sim_number), color = dist_name
)
) +
ggplot2::geom_line(size = line_size) +
ggplot2::theme_minimal() +
ggplot2::labs(
title = "Quantile Plot",
subtitle = sub_title,
color = "Simulation"
) +
ggplot2::theme(legend.position = leg_pos)
} else if (plot_type == "probability") {
plt <- data_tbl %>%
ggplot2::ggplot(
ggplot2::aes(
x = y, group = interaction(dist_name, sim_number), color = dist_name
)
) +
ggplot2::stat_ecdf(size = line_size) +
ggplot2::theme_minimal() +
ggplot2::labs(
title = "Probability Plot",
subtitle = sub_title,
color = "Simulation"
) +
ggplot2::theme(legend.position = leg_pos)
} else if (plot_type == "qq") {
plt <- data_tbl %>%
ggplot2::ggplot(
ggplot2::aes(
sample = y, group = interaction(dist_name, sim_number), color = dist_name
)
) +
ggplot2::stat_qq(size = point_size) +
ggplot2::stat_qq_line(size = line_size) +
ggplot2::theme_minimal() +
ggplot2::labs(
title = "QQ Plot",
subtitle = sub_title,
color = "Simulation"
) +
ggplot2::theme(legend.position = leg_pos)
} else if (plot_type == "mcmc") {
plt <- data_tbl %>%
dplyr::group_by(sim_number) %>%
dplyr::mutate(cmy = dplyr::cummean(y)) %>%
dplyr::ungroup() %>%
ggplot2::ggplot(ggplot2::aes(
x = x, y = cmy, group = sim_number, color = sim_number
)) +
ggplot2::geom_line() +
ggplot2::theme_minimal() +
ggplot2::scale_x_continuous(trans = "log10") +
ggplot2::labs(
title = "MCMC Cumulative Mean Plot",
caption = "X is on log10 scale.",
subtitle = sub_title,
color = "Simulation",
x = "",
y = ""
) +
ggplot2::theme(legend.position = leg_pos)
}
if (.geom_rug) {
plt <- plt +
ggplot2::geom_rug()
}
if ((.geom_point) & (!plot_type == "qq")) {
plt <- plt +
ggplot2::geom_point(size = point_size)
}
if (.geom_smooth & !plot_type == "mcmc") {
max_dy <- max(data_tbl$dy)
plt <- plt +
ggplot2::geom_smooth(
ggplot2::aes(
group = FALSE
),
se = FALSE,
color = "black",
linetype = "dashed"
) +
ggplot2::ylim(0, max_dy)
} else if (.geom_smooth & plot_type == "mcmc") {
plt <- plt +
ggplot2::geom_smooth(
ggplot2::aes(
group = FALSE
),
se = FALSE,
color = "black",
linetype = "dashed"
)
}
if (.geom_jitter) {
plt <- plt +
ggplot2::geom_jitter()
}
if (.interactive) {
plt <- plotly::ggplotly(plt)
}
# Return ----
return(plt)
} |
spsanderson
added a commit
that referenced
this issue
Dec 18, 2023
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The text was updated successfully, but these errors were encountered: