Skip to content

somnath-banerjee/Code-Mixed_SentimentAnalysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 

Repository files navigation

#Code-Mixed Sentiment Analysis


This work describes the participation of LIMSI_UPV team in SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text. The proposed approach competed in SentiMix Hindi-English subtask, that addresses the problem of predicting the sentiment of a given Hindi-English code-mixed tweet. We propose Recurrent Convolutional Neural Network that combines both the recurrent neural network and the convolutional network to better capture the semantics of the text, for code-mixed sentiment analysis.

Download link of the paper: https://arxiv.org/abs/2008.13173

If you use this code please cite our paper:

Somnath Banerjee, Sahar Ghannay, Sophie Rosset, Anne Vilnat and Paolo Rosso. "LIMSI_UPV at SemEval-2020 Task 9: Recurrent Convolutional Neural Network for Code-mixed Sentiment Analysis". Proceedings of the 14th International Workshop on Semantic Evaluation (SemEval-2020), Association for Computational Linguistics, 2020, December, Barcelona, Spain.


  • Repository structure
    • code
      • config.py
      • utility.py
      • model.py
      • train.py
    • embeddings
    • data
    • Paper.pdf

About

Code-mixed Sentiment Analysis Task-9@SEMEval2020

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages