-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathiss_solve.m
168 lines (138 loc) · 5.2 KB
/
iss_solve.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
%%
% Copyright 2014 Jacek B. Krawczyk and Alastair Pharo
%
% Licensed under the Apache License, Version 2.0 (the "License");
% you may not use this file except in compliance with the License.
% You may obtain a copy of the License at
%
% http://www.apache.org/licenses/LICENSE-2.0
%
% Unless required by applicable law or agreed to in writing, software
% distributed under the License is distributed on an "AS IS" BASIS,
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
% See the License for the specific language governing permissions and
% limitations under the License.
function [OCM, UOptimal, Value, Errors, Iterations] = ...
iss_solve(DeltaFunction, ...
StageReturnFunction, ...
StateLB, StateUB, varargin);
%% Construct options
Conf = iss_conf(StateLB, StateUB, varargin{:});
open_pool = 0;
try
if (Conf.Options.PoolSize > 1 && strcmp(Conf.System, 'matlab'))
open_pool = iss_pool_start(Conf.Options.PoolSize);
end
Options = Conf.Options;
Dimension = Conf.Dimension;
% Determine the initial control. This is used both to get the initial
% value, and to feed into *every* policy improvement iteration.
InitialControl = iss_initial_control(Conf);
% Create a cell array of controls. Use this as the "start" control
% for each iteration. This means that the same start is used in
% every iteration.
UStart = mat2cell(meshgrid(InitialControl, ...
ones(1, Conf.TotalStates)), ...
ones(1, Conf.TotalStates), ...
Options.ControlDimension);
% Track the norm of each policy iteration.
Norms = zeros(1, Options.PolicyIterations);
% The value of all states is initially zero.
Value = zeros(1, Conf.TotalStates);
for i=1:Options.PolicyIterations
if Conf.Debug
fprintf(' * Iteration #%i:\n', i);
else
fprintf(' * Iteration #%i ... ', i);
end
if Conf.Debug
fprintf(' - Policy improvement ... ');
polimp_start = tic();
end
% Remember the previous control policy if this is not the first
% iteration
if i > 1
UOld = UOptimal;
end
[UOptimal, Errors] = iss_polimp(UStart, Value, DeltaFunction, ...
StageReturnFunction, StateLB, ...
StateUB, Conf);
if Conf.Debug
polimp_elapsed = toc(polimp_start);
fprintf('done (%fs; %fs/state; %i errors).\n', ...
polimp_elapsed, ...
polimp_elapsed / Conf.TotalStates, ...
length(find(Errors)));
end
% Termination criterion.
if Conf.Debug
fprintf(' - Iteration #%i ', i);
end
if i == 1
fprintf('completed.\n', i);
else
m1 = cell2mat(UOld);
m2 = cell2mat(UOptimal);
diffs = m1(~Errors,:) - m2(~Errors,:);
num_diffs = length(find(diffs ~= 0));
Norms(i) = norm(diffs(:));
fprintf(['completed; norm: %f; # of ' ...
'differences: %i.\n'], Norms(i), num_diffs);
if Norms(i) <= Options.StoppingTolerance
fprintf([' - Norm is less than stopping tolerance of %f; Stopping.\n'], ...
Options.StoppingTolerance);
break;
end
end
if i >= 4 && all(Norms(i-3:i-1) == Norms(i))
fprintf(' - Last four norms were identical; aborting.\n');
break;
end
if Conf.Debug
fprintf(' - Value determination:\n');
end
Value = iss_valdet(UOptimal, DeltaFunction, StageReturnFunction, ...
StateLB, StateUB, Conf);
if Conf.Debug
fprintf(' - Value determination completed.\n');
end
end; % for i=1:PolicyIterations
% Optimal Coding Matrix initialisation. This is just
% slicing the cell array of optimal controls orthogonally
OCM = mat2cell(cell2mat(UOptimal), ...
Conf.TotalStates, ...
ones(1, Options.ControlDimension));
% Print final value and number of policy iterations.
FinalValue=Value(Conf.TotalStates);
fprintf('\n * Final value determination: %f\n', FinalValue);
fprintf(' * Number of policy iterations: %i\n', i);
% Print information about how many errors occurred
errors = length(find(Errors));
fprintf(' * Errors: %i\n', errors);
fprintf(' * Error Percentage: %f\n\n', errors * 100 / Conf.TotalStates);
% Print final norm if the number of iterations used failed to take it under
% 0.001.
if i==Options.PolicyIterations
fprintf(' * All iterations were used.\n');
end
iss_pool_stop(open_pool);
catch
exception = lasterror();
iss_pool_stop(open_pool);
%exception.stack(2)
rethrow(exception);
end
%% Return the number of iterations
Iterations = i;
%% If a problem file has been specified, save the details
if Options.ProblemFile
if Conf.Debug
fprintf(' * Saving to %s ... ', Options.ProblemFile);
end
iss_save_conf(DeltaFunction, StageReturnFunction, StateLB, StateUB, Conf);
iss_save_solution(OCM, Conf);
if Conf.Debug
fprintf('done.\n');
end
end
end