Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SNOW-1478406: Avoid unnecessary queries on squeeze #1767

Merged
merged 3 commits into from
Jun 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions src/snowflake/snowpark/modin/pandas/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -2347,15 +2347,15 @@ def squeeze(self, axis: Axis | None = None):
len_columns = self._query_compiler.get_axis_len(1)
if axis == 1 and len_columns == 1:
return Series(query_compiler=self._query_compiler)
# get_axis_len(0) results in a sql query to count number of rows in current
# dataframe. We should only compute len_index if axis is 0 or None.
len_index = len(self)
if axis is None and (len_columns == 1 or len_index == 1):
return Series(query_compiler=self._query_compiler).squeeze()
if axis == 0 and len_index == 1:
return Series(query_compiler=self.T._query_compiler)
else:
return self.copy()
if axis in [0, None]:
# get_axis_len(0) results in a sql query to count number of rows in current
sfc-gh-dpetersohn marked this conversation as resolved.
Show resolved Hide resolved
# dataframe. We should only compute len_index if axis is 0 or None.
len_index = len(self)
if axis is None and (len_columns == 1 or len_index == 1):
return Series(query_compiler=self._query_compiler).squeeze()
if axis == 0 and len_index == 1:
return Series(query_compiler=self.T._query_compiler)
return self.copy()

@dataframe_not_implemented()
def stack(self, level=-1, dropna=True): # noqa: PR01, RT01, D200
Expand Down
9 changes: 1 addition & 8 deletions tests/integ/modin/frame/test_loc.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,12 +152,6 @@ def test_df_loc_get_tuple_key(
query_count = 1
if is_scalar(row) or isinstance(row, tuple) or isinstance(row, native_pd.Index):
query_count = 2
if is_scalar(col) or isinstance(col, tuple):
if isinstance(row, native_pd.Index):
# one extra query to convert to series to index into df
query_count = 3
else:
query_count = 2

with SqlCounter(
query_count=query_count,
Expand Down Expand Up @@ -201,8 +195,7 @@ def test_df_loc_get_callable_key(
def test_df_loc_get_col_non_boolean_key(
key, str_index_snowpark_pandas_df, str_index_native_df
):

with SqlCounter(query_count=2 if is_scalar(key) or isinstance(key, tuple) else 1):
with SqlCounter(query_count=1):
eval_snowpark_pandas_result(
str_index_snowpark_pandas_df,
str_index_native_df,
Expand Down
18 changes: 10 additions & 8 deletions tests/integ/modin/frame/test_squeeze.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
import pytest

import snowflake.snowpark.modin.plugin # noqa: F401
from tests.integ.modin.sql_counter import SqlCounter, sql_count_checker
from tests.integ.modin.sql_counter import SqlCounter
from tests.integ.modin.utils import eval_snowpark_pandas_result


Expand All @@ -33,8 +33,10 @@ def test_1d(axis):
)
if axis is None:
expected_query_count = 3
else:
elif axis in [0, "index"]:
expected_query_count = 2
else:
expected_query_count = 1
with SqlCounter(query_count=expected_query_count):
eval_snowpark_pandas_result(
pd.DataFrame({"a": [1], "b": [2], "c": [3]}),
Expand All @@ -43,13 +45,13 @@ def test_1d(axis):
)


@sql_count_checker(query_count=2)
def test_2d(axis):
eval_snowpark_pandas_result(
pd.DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}),
native_pd.DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}),
lambda df: df.squeeze(axis=axis),
)
with SqlCounter(query_count=1 if axis in [1, "columns"] else 2):
eval_snowpark_pandas_result(
pd.DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}),
native_pd.DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}),
lambda df: df.squeeze(axis=axis),
)


def test_scalar(axis):
Expand Down
Loading