This repo contains Python implementations of ReXCam: Resource-Efficient, Cross-Camera Video Analytics at Scale.
- PyTorch (0.4.0)
- torchvision (0.2.1)
- OpenCV ()
- AWS Deeplens ()
- MXNet ()
Python2 is recommended for current version.
cd
to the folder where you want to download this repo.- run
git clone https://github.com/skybigzhou/RexCam.git
.
Create a directory to store reid datasets under this repo via
Run the controller on remote laptop with
PYTHONPATH=. python src/controller/messenger_run.py
And
Inside messenger_run.py
rememeber to modify spatial temporal correlation matrix corr_matrix
, start_times
, and end_times
.
Then in function trigger()
message sending format is (ip_address, instruction, keyword, task, model, video, bAnalysis, query, start_time, end_time)
run model management
bash script.sh run modelmanagement
or
PYTHONPATH=. python src/worker/modelManagement.py -mps {list of model_path}
arguments: -mps
model_path loading to GPU
run data management
bash script.sh run datamanagement
or
PYTHONPATH=. python src/worker/dataManagement.py -t {duration_time}
arguments: -t
duration time
run worker for local version
PYTHONPATH=. python src/worker/script.py -f intel_mo_IR -mp /opt/awscam/artifacts/deploy_ssd_mobilenet_512 -t ssd -s AWSCAM -n deploy_ssd_mobilenet_512
arguments: -f {format} -mp {model_path} -t {task} -s {video source} -n {model_nickname}
run worker for remote control version
PTYHONPATH=. python src/worker/script.py