To install simply run
conda env create -f environment.yml
Training information and additional README can be found in each model subfolder.
To change directory:
export OPENAI_LOGDIR={OUTPUT_FOLDER}
Model parameters:
MODEL_FLAGS="--image_size 256 --num_channels 128 --num_res_blocks 2 --num_heads 1 --learn_sigma True --use_scale_shift_norm False --attention_resolutions 16"
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear --rescale_learned_sigmas False --rescale_timesteps False"
TRAIN_FLAGS="--lr 1e-4 --batch_size 2"
Training:
python improved-diffusion/scripts/image_train.py --data_dir ./improved-diffusion/datasets/Kvasir-SEG/masks $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS
Sampling:
python improved-diffusion/scripts/image_sample.py --num_samples {SAMPLES} --model_path {MODEL_CHECKPOINT.pt} --output {OUTPUT_TYPE} --postprocess {POSTPROCESS} $MODEL_FLAGS $DIFFUSION_FLAGS
Training:
python latent-diffusion/main.py --base latent-diffusion/configs/latent-diffusion/kvasir-ldm-vq4-.yaml -t --gpus 0,
Sampling: We can generate polyp images based on the condition, based on:
- Existing dataset
python latent-diffusion/scripts/inference_dataset.py
- Generated mask, mask(s) needs to be placed inside
latent-diffusion/data/samples/masks
:
python latent-diffusion/scripts/inference_mask.py {IMAGE_NAME} --samples {SAMPLES}
Results are stored inside latent-diffusion/results
To render multiple polyps we can use {SAMPLES}
to sample multiple mask(s) and use them to generate polyp(s):
export OPENAI_LOGDIR='latent-diffusion/results/masks/'
MODEL_FLAGS="--image_size 256 --num_channels 128 --num_res_blocks 2 --num_heads 1 --learn_sigma True --use_scale_shift_norm False --attention_resolutions 16"
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear --rescale_learned_sigmas False --rescale_timesteps False"
TRAIN_FLAGS="--lr 1e-4 --batch_size 2"
python improved-diffusion/scripts/image_sample.py --num_samples {SAMPLES} --model_path {MODEL_CHECKPOINT.pt} --output png --postprocess {POSTPROCESS} $MODEL_FLAGS $DIFFUSION_FLAGS
python latent-diffusion/scripts/inference_pipe.py
To visually inspect overlap between generated mask(s) and the training dataset that was used for training the diffusion model, we can use:
python improved-diffusion/scripts/image_compare.py {KVASIR_PATH} {MASK_IMAGE_PATH}
Follow the instruction in ./segmentation_experiments