Skip to content

this project is the code of domain adaptation referenced by unsupervised domain adaptation by backpropagation(http://machinelearning.wustl.edu/mlpapers/paper_files/icml2015_ganin15.pdf).And i realized it on mnist.

Notifications You must be signed in to change notification settings

shucunt/domain_adaptation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

domain_adaptation

this project is the code of domain adaptation referenced by unsupervised domain adaptation by backpropagation(http://machinelearning.wustl.edu/mlpapers/paper_files/icml2015_ganin15.pdf).And i realized it on mnist.

domain adaptation实现

项目在cnn网络上实现了domain adaptation 项目大体上遵照论文:unsupervised domain adaptation by backpropagation : 下载地址:http://machinelearning.wustl.edu/mlpapers/paper_files/icml2015_ganin15.pdf

============================= 实现是基于cnn网络 CNN代码解读博文:http://blog.csdn.net/u012162613/article/details/43225445 CNN代码来源:https://github.com/wepe/MachineLearning/blob/master/DeepLearning%20Tutorials/cnn_LeNet/convolutional_mlp_commentate.py

============================= 项目文件下只有四个文件夹:SRC,data,result,reference

============================= SRC存储了项目所有的源代码: 运行顺序:generate_data.py -> generateMNIST_SandMNIST_T.py -> cnn_~~~.py

generate_data.py:根据mnist.pkl.gz生成目标域数据集:target~.pkl和st~.pkl(存在data/下) 可以在generate_data.py中修改theta(源域和目标域图片做差时乘的比例,防止两个域的差距过大)

generateMNIST_SandMNIST_T.py:根据source.pkl、target~.pkl和st~.pkl生成部分图片,用来做展示 只生成了一部分,train,valid,test各生成10个图片。

cnn_ts_ts.py:在源域上训练,在源域上测试

cnn_ts_tt.py:在源域上训练,在目标域上测试(验证集为目标域数据)

cnn_tt_tt.py:在目标域上训练,在目标域上测试

cnn_tst_ts.py:在源域和目标域上训练,在目标域上测试(也就是使用领域自适应机制)(验证集合为目标域数据) 可以在其中调节lmbda(论文中公式4的lambda)

上述4个文件将结果输出在txt文件中,存在result/下

============================= data下存了项目需要存的数据: 在运行程序前要具有以下文件:BSR文件夹,imageMNIST_T文件夹,imageMNIST_S文件夹,mnist.pkl.gz, source.pkl

其中BSR文件夹: 下载来源:http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz 数据集介绍:https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html#bsds500 下载完成之后将BSR_bsds500.tgz解压,包含一个BSR文件夹,把这个BSR文件夹放到data下就行

imageMNIST_S和imageMNIST_T:两个文件夹存储generateMNIST_SandMNIST_T.py生成的图片, imageMNIST_S存储源域的图片 imageMNIST_T存储目标域图片 运行前为空即可 imageMNIST_S和imageMNIST_T中名字相同的图片相对应

mnist.pkl.gz:是mnist数据集,运行前要下载好 数据来源:http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz

source.pkl:是mnist.pkl.gz的解压文件,运行前要解压好

运行后会生成st~.pkl和target~.pkl存在data下: 其中~部分表示theta的取值

============================= result下存了运行结果 运行结果文件命名方式和代码文件命名方式相同

============================= reference下存了项目论文 unsupervised domain adaptation by backpropagation

============================= 项目调节的主要参数: theta:源域和噪声域图片同像素点灰度值做差时,噪声域乘的比例。 论文中4.1Results--MNIST->MNIST-M中的图片生成公式,我在I1和I2做差时对I2乘了一个theta,控制源域和目标域的差距。 theta在0到1之间,越小差距越小,越大差距越大

lmbda:论文中公式4的lambda。控制在反向传播过程中,域分类器的损失对特征提取器的参数的修改程度。 lmbda在0到1之间,lmbda越小,域分类器的损失对特征提取器的参数的修改程度越小。

About

this project is the code of domain adaptation referenced by unsupervised domain adaptation by backpropagation(http://machinelearning.wustl.edu/mlpapers/paper_files/icml2015_ganin15.pdf).And i realized it on mnist.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages