Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dev #139

Merged
merged 12 commits into from
Aug 1, 2023
Merged

Dev #139

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 59 additions & 0 deletions build_domain_tokenizer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description: Build chinese tokenizer from corpus txt

# train sentencepiece model from `corpus.txt` and makes `m.model` and `m.vocab`
# `m.vocab` is just a reference. not used in the segmentation.
# spm.SentencePieceTrainer.train('--input=data/pretrain/tianlongbabu.txt --model_prefix=m --vocab_size=20000')
"""
import argparse

import sentencepiece as spm


def main():
parser = argparse.ArgumentParser()
parser.add_argument('--in_file', default='data/pretrain/tianlongbabu.txt', type=str)
parser.add_argument('--domain_sp_model_name', default='domain_sp', type=str)
parser.add_argument('--max_sentence_length', default=16384, type=int)
parser.add_argument('--pad_id', default=3, type=int)
parser.add_argument('--vocab_size', default=10000, type=int)
parser.add_argument('--model_type', default="BPE", type=str)

args = parser.parse_args()
print(args)

spm.SentencePieceTrainer.train(
input=args.in_file,
model_prefix=args.domain_sp_model_name,
shuffle_input_sentence=False,
train_extremely_large_corpus=True,
max_sentence_length=args.max_sentence_length,
pad_id=args.pad_id,
model_type=args.model_type,
vocab_size=args.vocab_size,
split_digits=True,
split_by_unicode_script=True,
byte_fallback=True,
allow_whitespace_only_pieces=True,
remove_extra_whitespaces=False,
normalization_rule_name="nfkc",
)

# makes segmenter instance and loads the model file (m.model)
sp = spm.SentencePieceProcessor()
model_file = args.domain_sp_model_name + '.model'
sp.load(model_file)

# encode: text => id
print(sp.encode_as_pieces('慕容复来到河边,this is a test'))
print(sp.encode_as_ids('this is a test'))

# decode: id => text
print(sp.decode_pieces(['▁This', '▁is', '▁a', '▁t', 'est']))
# print(sp.decode_ids([209, 31, 9, 375, 586]))


if __name__ == '__main__':
main()
29 changes: 17 additions & 12 deletions convert_alpaca.py → convert_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,31 +12,36 @@
parser = argparse.ArgumentParser()
parser.add_argument("--in_file", type=str)
parser.add_argument("--out_file", type=str)
parser.add_argument("--data_type", type=str, default='alpaca')
args = parser.parse_args()

print(args)
data_files = {"train": args.in_file}
raw_datasets = load_dataset('json', data_files=data_files)
ds = raw_datasets['train']


def process(examples):
ids = []
def process_alpaca(examples):
convs = []
langs = []
id = 0
for instruction, inp, output in zip(examples['instruction'], examples['input'], examples['output']):
if len(inp.strip()) > 1:
instruction = instruction + '\nInput:\n' + inp
q = instruction
a = output
convs.append([
{"from": "human", "value": q},
{"from": "gpt", "value": a},
{"from": "gpt", "value": a}
])
id += 1
ids.append(f'alpaca_{id}')
langs.append('zh')
return {'id': ids, 'conversations': convs, 'lang': langs}
return {"conversations": convs}


if args.data_type in ['alpaca']:
ds = ds.map(process_alpaca, batched=True, remove_columns=ds.column_names, desc="Running process")
else:
# Other sharegpt dataset, need rename to conversations and remove unused columns
if "items" in ds.column_names:
ds = ds.rename(columns={"items": "conversations"})
columns_to_remove = ds.column_names.copy()
columns_to_remove.remove('conversations')
ds = ds.remove_columns(columns_to_remove)

dataset = raw_datasets['train'].map(process, batched=True, remove_columns=raw_datasets['train'].column_names)
dataset.to_json(f"{args.out_file}", lines=True, force_ascii=False)
ds.to_json(f"{args.out_file}", lines=True, force_ascii=False)
1,000 changes: 0 additions & 1,000 deletions data/finetune/sharegpt_zh_1K.json

This file was deleted.

1,000 changes: 1,000 additions & 0 deletions data/finetune/sharegpt_zh_1K_format.jsonl

Large diffs are not rendered by default.

Loading