Skip to content

shexuan/wbdc2021_rank13

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

2021中国高校计算机大赛-微信大数据挑战赛

本次比赛基于脱敏和采样后的数据信息,对于给定的一定数量到访过微信视频号“热门推荐”的用户,根据这些用户在视频号内的历史n天的行为数据,通过算法在测试集上预测出这些用户对于不同视频内容的互动行为(包括点赞、点击头像、收藏、转发等)的发生概率。

本次比赛以多个行为预测结果的加权uAUC值进行评分。大赛官方网站:https://algo.weixin.qq.com/

1. 环境依赖

  • pandas==1.0.5
  • numpy==1.19.5
  • numba==0.53.1
  • scipy==1.5.0
  • torch==1.4.0
  • python==3.6.5
  • gensim==3.8.0
  • deepctr-torch==0.2.7
  • transformers==3.1.0
  • bayesian-optimization==1.2.0
  • tensorflow==2.5.0
  • tensorflow-estimator==2.5.0

2. 目录结构

./
├── README.md
├── requirements.txt, python package requirements 
├── init.sh, script for installing package requirements
├── train.sh, script for preparing train/inference data and training models, including pretrained models
├── inference.sh, script for inference 
├── src
│   ├── prepare, codes for preparing train/inference dataset
|       ├──Step1_feed_text_process.py
|       ├──Step2_feed_text_cluster.py
|       ├──Step3_w2v_feed_author_user.py
|       ├──Step4_train_eges.py
|       ├──Step5_bayes_smooth.py
│   ├── model, codes for model architecture
|       ├──moe.py  
|   ├── train, codes for training
|       ├──preprocess.py
|       ├──generate_train_data.py 
|       ├──opt_moe.py
|       ├──train.py
|   ├── inference.py, main function for inference on test dataset
|   ├── utils.py, some utils functions
├── data
│   ├── wedata, dataset of the competition
│       ├── wechat_algo_data1, preliminary dataset
│       ├── wechat_algo_data2, preliminary dataset
│   ├── my_data, train data and features for training models
│   ├── submission, prediction result after running inference.sh
│   ├── model, model files (e.g. pytorch trained model state dict)

3. 运行流程

  • 进入目录:cd /home/tione/notebook/wbdc2021-semi
  • 安装环境:source init.sh
  • 预测并生成结果文件:sh inference.sh /home/tione/notebook/wbdc2021/data/wedata/wechat_algo_data2/test_b.csv
  • 数据准备和模型训练:sh train.sh

4. 模型及特征

  • 模型:Multi-perceptron DNN

  • 参数:

    • batch_size: 40000
    • emded_dim: 128
    • num_epochs: 2
    • learning_rate: 0.06
  • 特征:userid, feedid, authorid, bgm_singer_id, bgm_song_id, videoplayseconds, feed和author的tag、keyword聚类特征, 以及user、feed、author的word2vec Embedding特征;

5. 算法性能

  • 资源配置:2*P40_48G显存_14核CPU_112G内存
  • 预测耗时
    • 单模总预测时长: 3418 s
    • 单个目标行为2000条样本的平均预测时长: 228 ms

6. 代码说明

模型预测部分代码位置如下:

路径 行数 内容
src/inference.py 69 pred_arr = moe.predict(test_loader)

7. 相关文献

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published