The data used in experiments can be obtained here (files train_val.tar.gz
, test.tar.gz
) and should be placed in ./data
directory.
- Choose in
config/FaIRGP.yaml
which scenarios to use for training - Run from root directory
$ python fit_FaIRGP.py --cfg=config/FaIRGP.yaml --o=path/to/output/directory
- Choose in
config/PlainGP.yaml
which scenarios to use for training - Run from root directory
$ python fit_spatial_FaIRGP.py --cfg=config/spatial-FaIRGP.yaml --o=path/to/output/directory
- Running evaluation of FaIRGP
$ python evaluate_FaIRGP.py --cfg=config/FaIRGP.yaml --o=path/to/output/directory
- Running evaluation of Plain GP
$ python evaluate_Plain_GP.py --cfg=config/PlainGP.yaml --o=path/to/output/directory
- Running evaluation of FaIR
$ python evaluate_FaIR.py --cfg=config/FaIR.yaml --o=path/to/output/directory
- Go to
notebooks/SSP-global-experiment-score-analysis.ipynb
- Fit 4 spatial FaIRGP model on training set without ssp126 XOR ssp245 XOR ssp370 XOR ssp585
- Fit 4 spatial PlainGP model on training set without ssp126 XOR ssp245 XOR ssp370 XOR ssp585
- Go to
notebooks/SSP-spatial-experiment-score-analysis.ipynb
Code implemented in Python 3.8.0
Create and activate environment (with pyenv here)
$ pyenv virtualenv 3.8.0 venv
$ pyenv activate venv
$ (venv)
Install dependencies
$ (venv) pip install -r requirements.txt
@article{bouabid2024fairgp,
title={FaIRGP: A Bayesian energy balance model for surface temperatures emulation},
author={Bouabid, Shahine and Sejdinovic, Dino and Watson-Parris, Duncan},
journal={Journal of Advances in Modeling Earth Systems},
volume={16},
number={6},
pages={e2023MS003926},
year={2024},
publisher={Wiley Online Library}
}