-
Notifications
You must be signed in to change notification settings - Fork 983
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
support w8a8 fp8 kernel with CUTLASS (#3047)
Co-authored-by: yych0745 <[email protected]>
- Loading branch information
Showing
8 changed files
with
881 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
import argparse | ||
import copy | ||
import itertools | ||
|
||
import torch | ||
import triton | ||
from sgl_kernel import fp8_scaled_mm as sgl_scaled_mm | ||
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm | ||
from vllm._custom_ops import scaled_fp8_quant as vllm_scaled_fp8_quant | ||
|
||
# Weight Shapes are in the format | ||
# ([K, N], TP_SPLIT_DIM) | ||
# Example: | ||
# A shape of ([14336, 4096], 0) indicates the following GEMM shape, | ||
# - TP1 : K = 14336, N = 4096 | ||
# - TP2 : K = 7168, N = 4096 | ||
# A shape of ([4096, 6144], 1) indicates the following GEMM shape, | ||
# - TP1 : K = 4096, N = 6144 | ||
# - TP4 : K = 4096, N = 1536 | ||
|
||
# TP1 shapes | ||
WEIGHT_SHAPES = { | ||
"meta-llama/Llama-3.1-8B-Instruct": [ | ||
([4096, 6144], 1), | ||
([4096, 4096], 0), | ||
([4096, 28672], 1), | ||
([14336, 4096], 0), | ||
], | ||
"meta-llama/Llama-3.3-70B-Instruct": [ | ||
([8192, 10240], 1), | ||
([8192, 8192], 0), | ||
([8192, 57344], 1), | ||
([28672, 8192], 0), | ||
], | ||
"mistralai/Mistral-Large-Instruct-2407": [ | ||
([12288, 14336], 1), | ||
([12288, 12288], 0), | ||
([12288, 57344], 1), | ||
([28672, 12288], 0), | ||
], | ||
"Qwen/Qwen2.5-7B-Instruct": [ | ||
([3584, 4608], 1), | ||
([3584, 3584], 0), | ||
([3584, 37888], 1), | ||
([18944, 3584], 0), | ||
], | ||
"Qwen/Qwen2.5-32B-Instruct": [ | ||
([5120, 7168], 1), | ||
([5120, 5120], 0), | ||
([5120, 55296], 1), | ||
([27648, 5120], 0), | ||
], | ||
"Qwen/Qwen2.5-72B-Instruct": [ | ||
([8192, 10240], 1), | ||
([8192, 8192], 0), | ||
([8192, 59136], 1), | ||
([29568, 8192], 0), | ||
], | ||
"deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": [ | ||
([2048, 3072], 1), | ||
([2048, 4096], 1), | ||
([2048, 2048], 0), | ||
([2048, 576], 0), | ||
([2048, 21888], 1), | ||
([10944, 2048], 0), | ||
([2048, 2816], 1), | ||
([1408, 2048], 0), | ||
], | ||
} | ||
|
||
|
||
@triton.testing.perf_report( | ||
triton.testing.Benchmark( | ||
x_names=["batch_size"], | ||
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048], | ||
x_log=False, | ||
line_arg="provider", | ||
line_vals=[ | ||
"vllm-fp8-fp16", | ||
"vllm-fp8-bf16", | ||
"sglang-fp8-fp16", | ||
"sglang-fp8-bf16", | ||
], | ||
line_names=[ | ||
"vllm-fp8-fp16", | ||
"vllm-fp8-bf16", | ||
"sglang-fp8-fp16", | ||
"sglang-fp8-bf16", | ||
], | ||
styles=[("green", "-"), ("green", "--"), ("blue", "-"), ("blue", "--")], | ||
ylabel="GB/s", | ||
plot_name="fp8 scaled matmul", | ||
args={}, | ||
) | ||
) | ||
def benchmark(batch_size, provider, N, K): | ||
# M, N, K = batch_size, 4096, 8192 | ||
M = batch_size | ||
a = torch.ones((M, K), device="cuda") * 5.0 | ||
b = torch.ones((N, K), device="cuda") * 5.0 | ||
scale_a = torch.randn((M,), device="cuda", dtype=torch.float32) | ||
scale_b = torch.randn((N,), device="cuda", dtype=torch.float32) | ||
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a) | ||
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b) | ||
b_fp8 = b_fp8.t() | ||
quantiles = [0.5, 0.2, 0.8] | ||
|
||
dtype = torch.float16 if "fp16" in provider else torch.bfloat16 | ||
|
||
if "vllm-fp8" in provider: | ||
ms, min_ms, max_ms = triton.testing.do_bench( | ||
lambda: vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype), | ||
quantiles=quantiles, | ||
) | ||
elif "sglang-fp8" in provider: | ||
ms, min_ms, max_ms = triton.testing.do_bench( | ||
lambda: sgl_scaled_mm( | ||
a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype, bias=None | ||
), | ||
quantiles=quantiles, | ||
) | ||
|
||
gbps = lambda ms: (2 * M * N * K + M * N) * a.element_size() * 1e-9 / (ms * 1e-3) | ||
return gbps(ms), gbps(max_ms), gbps(min_ms) | ||
|
||
|
||
def prepare_shapes(args): | ||
KN_model_names = [] | ||
models_tps = list(itertools.product(args.models, args.tp_sizes)) | ||
for model, tp_size in models_tps: | ||
assert model in WEIGHT_SHAPES | ||
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model]): | ||
KN[tp_split_dim] = KN[tp_split_dim] // tp_size | ||
KN.append(model) | ||
KN_model_names.append(KN) | ||
return KN_model_names | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--models", | ||
nargs="+", | ||
type=str, | ||
default=["meta-llama/Llama-3.1-8B-Instruct"], | ||
help="List of models to benchmark", | ||
) | ||
parser.add_argument( | ||
"--tp-sizes", | ||
nargs="+", | ||
type=int, | ||
default=[1], | ||
help="List of tensor parallel sizes", | ||
) | ||
args = parser.parse_args() | ||
|
||
KN_model_names = prepare_shapes(args) | ||
for K, N, model_name in KN_model_names: | ||
print(f"{model_name} N={N} K={K}: ") | ||
benchmark.run( | ||
print_data=True, show_plots=True, save_path="bench_fp8_res", N=N, K=K | ||
) | ||
|
||
print("Benchmark finished!") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.