Skip to content

A pytorch lightning implementation of Two-Level resolution Neural Network (TwoResNet) for traffic forecasting.

License

Notifications You must be signed in to change notification settings

semink/TwoResNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TwoResNet

Shows an illustrated sun in light color mode and a moon with stars in dark color mode.

This is a PyTorch lightning implementation of Two-Level resolution Neural Network (TwoResNet) for traffic forecasting.

1. Installing dependencies

1.1. Create a venv environment

python3 -m venv env

1.2. Activate pip environment

source env/bin/activate

1.3. Install dependencies

pip install -r requirements.txt

1.4. Install PyTorch

In case error occurs, try to install PyTorch according to your local environment following the description here.

2. Model training

You can find tensorboard logs for pretrained models here.

2.1. METR-LA

python run.py --config=data/config/training.yaml --train --dataset=la

2.2. PEMS-BAY

python run.py --config=data/config/training.yaml --train --dataset=bay

3. Test

3.1. METR-LA

python run.py --config=data/config/test.yaml --test --dataset=la

Result

Horizon 1 (5 min) - MAE: 2.24, RMSE: 3.86, MAPE: 5.32
Horizon 2 (10 min) - MAE: 2.49, RMSE: 4.60, MAPE: 6.19
Horizon 3 (15 min) - MAE: 2.65, RMSE: 5.08, MAPE: 6.78
Horizon 4 (20 min) - MAE: 2.79, RMSE: 5.47, MAPE: 7.29
Horizon 5 (25 min) - MAE: 2.90, RMSE: 5.79, MAPE: 7.73
Horizon 6 (30 min) - MAE: 3.01, RMSE: 6.07, MAPE: 8.14
Horizon 7 (35 min) - MAE: 3.09, RMSE: 6.30, MAPE: 8.47
Horizon 8 (40 min) - MAE: 3.17, RMSE: 6.51, MAPE: 8.78
Horizon 9 (45 min) - MAE: 3.23, RMSE: 6.68, MAPE: 9.05
Horizon 10 (50 min) - MAE: 3.29, RMSE: 6.83, MAPE: 9.28
Horizon 11 (55 min) - MAE: 3.34, RMSE: 6.96, MAPE: 9.50
Horizon 12 (60 min) - MAE: 3.39, RMSE: 7.08, MAPE: 9.71
Aggregation - MAE: 2.97, RMSE: 6.01, MAPE: 8.02

3.2. PEMS-BAY

python run.py --config=data/config/test.yaml --test --dataset=bay

Result

Horizon 1 (5 min) - MAE: 0.87, RMSE: 1.56, MAPE: 1.67
Horizon 2 (10 min) - MAE: 1.12, RMSE: 2.21, MAPE: 2.26
Horizon 3 (15 min) - MAE: 1.30, RMSE: 2.73, MAPE: 2.72
Horizon 4 (20 min) - MAE: 1.43, RMSE: 3.14, MAPE: 3.08
Horizon 5 (25 min) - MAE: 1.53, RMSE: 3.45, MAPE: 3.37
Horizon 6 (30 min) - MAE: 1.61, RMSE: 3.69, MAPE: 3.60
Horizon 7 (35 min) - MAE: 1.68, RMSE: 3.88, MAPE: 3.79
Horizon 8 (40 min) - MAE: 1.73, RMSE: 4.03, MAPE: 3.95
Horizon 9 (45 min) - MAE: 1.78, RMSE: 4.15, MAPE: 4.09
Horizon 10 (50 min) - MAE: 1.82, RMSE: 4.25, MAPE: 4.21
Horizon 11 (55 min) - MAE: 1.85, RMSE: 4.33, MAPE: 4.31
Horizon 12 (60 min) - MAE: 1.89, RMSE: 4.41, MAPE: 4.40
Aggregation - MAE: 1.55, RMSE: 3.59, MAPE: 3.45

4. Citation

If you find this repository, e.g., the code and the datasets, useful in your research, please cite the following paper:

@inproceedings{Li2022tworesnet,
      title = {TwoResNet: Two-level resolution neural network for traffic forecasting of freeway networks},
      author = {Li, Danya and Kwak, Semin and Geroliminis, Nikolas},
      year = {2022},
      publisher={25th IEEE International Conference on Intelligent Transportation Systems (ITSC)},
      venue = {Macau, China}, eventdate={2022-10-08/2022-10-12},
}

About

A pytorch lightning implementation of Two-Level resolution Neural Network (TwoResNet) for traffic forecasting.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages