Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

17 error catching when calculating summary statistics #18

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ build-backend = "poetry.core.masonry.api"

[tool.poetry]
name = "pyelq-sdk"
version = "1.0.10"
version = "1.0.11"
description = "Package for detection, localization and quantification code."
authors = ["Bas van de Kerkhof", "Matthew Jones", "David Randell"]
homepage = "https://sede-open.github.io/pyELQ/"
Expand Down Expand Up @@ -49,7 +49,7 @@ addopts = "--cov=pyelq --cov-fail-under=90 --ignore-glob=*plot*"
testpaths = ["tests"]

[tool.coverage.report]
omit = ["*plot*", "*/data_access/*", "*/plotting/*", "*/post_processing/*"]
omit = ["*plot*", "*/data_access/*", "*/plotting/*", "*post_processing*"]
exclude_lines = [".*def.*plot.*", "from pyelq.plotting.plot import Plot"]

[tool.coverage.run]
Expand Down
38 changes: 36 additions & 2 deletions src/pyelq/support_functions/post_processing.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
Module containing some functions used in post-processing of the results.

"""
import warnings
from typing import TYPE_CHECKING, Tuple, Union

import numpy as np
Expand Down Expand Up @@ -80,7 +81,7 @@ def calculate_rectangular_statistics(
overall_count (np.ndarray): Count of the number of estimates in each bin.
normalized_count (np.ndarray): Normalized count of the number of estimates in each bin.
count_boolean (np.ndarray): Boolean array which indicates if likelihood of pixel is over threshold.
edges_result (np.ndarray): Centers of the pixels in the x and y direction.
edges_result (list): Centers of the pixels in the x and y direction.
summary_result (pd.DataFrame): Summary statistics for each blob of estimates.

"""
Expand All @@ -89,7 +90,40 @@ def calculate_rectangular_statistics(
ref_longitude = model_object.components["source"].dispersion_model.source_map.location.ref_longitude
ref_altitude = model_object.components["source"].dispersion_model.source_map.location.ref_altitude

all_source_locations = model_object.mcmc.store["z_src"]
if model_object.components["source"].reversible_jump:
all_source_locations = model_object.mcmc.store["z_src"]
else:
source_locations = (
model_object.components["source"]
.dispersion_model.source_map.location.to_enu(
ref_longitude=ref_longitude, ref_latitude=ref_latitude, ref_altitude=ref_altitude
)
.to_array()
)
all_source_locations = np.repeat(source_locations.T[:, :, np.newaxis], model_object.mcmc.n_iter, axis=2)

if np.all(np.isnan(all_source_locations[:2, :, :])):
warnings.warn("No sources found")
result_weighted = np.array([[[np.nan]]])
overall_count = np.array([[0]])
normalized_count = np.array([[0]])
count_boolean = np.array([[False]])
edges_result = [np.array([np.nan])] * 2
summary_result = pd.DataFrame()
summary_result.index.name = "source_ID"
summary_result.loc[0, "latitude"] = np.nan
summary_result.loc[0, "longitude"] = np.nan
summary_result.loc[0, "altitude"] = np.nan
summary_result.loc[0, "height"] = np.nan
summary_result.loc[0, "median_estimate"] = np.nan
summary_result.loc[0, "quantile_025"] = np.nan
summary_result.loc[0, "quantile_975"] = np.nan
summary_result.loc[0, "iqr_estimate"] = np.nan
summary_result.loc[0, "absolute_count_iterations"] = np.nan
summary_result.loc[0, "blob_likelihood"] = np.nan

return result_weighted, overall_count, normalized_count, count_boolean, edges_result[:2], summary_result

min_x = np.nanmin(all_source_locations[0, :, :])
max_x = np.nanmax(all_source_locations[0, :, :])
min_y = np.nanmin(all_source_locations[1, :, :])
Expand Down