-
Notifications
You must be signed in to change notification settings - Fork 45
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add metric for general MSAS statistics (#649)
- Loading branch information
Showing
3 changed files
with
223 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
"""StatisticMSAS module.""" | ||
|
||
import numpy as np | ||
import pandas as pd | ||
|
||
from sdmetrics.goal import Goal | ||
from sdmetrics.single_column.statistical.kscomplement import KSComplement | ||
|
||
|
||
class StatisticMSAS: | ||
"""Statistic Multi-Sequence Aggregate Similarity (MSAS) metric. | ||
Attributes: | ||
name (str): | ||
Name to use when reports about this metric are printed. | ||
goal (sdmetrics.goal.Goal): | ||
The goal of this metric. | ||
min_value (Union[float, tuple[float]]): | ||
Minimum value or values that this metric can take. | ||
max_value (Union[float, tuple[float]]): | ||
Maximum value or values that this metric can take. | ||
""" | ||
|
||
name = 'Statistic Multi-Sequence Aggregate Similarity' | ||
goal = Goal.MAXIMIZE | ||
min_value = 0.0 | ||
max_value = 1.0 | ||
|
||
@staticmethod | ||
def compute(real_data, synthetic_data, statistic='mean'): | ||
"""Compute this metric. | ||
This metric compares the distribution of a given statistic across sequences | ||
in the real data vs. the synthetic data. | ||
It works as follows: | ||
- Calculate the specified statistic for each sequence in the real data | ||
- Form a distribution D_r from these statistics | ||
- Do the same for the synthetic data to form a new distribution D_s | ||
- Apply the KSComplement metric to compare the similarities of (D_r, D_s) | ||
- Return this score | ||
Args: | ||
real_data (tuple[pd.Series, pd.Series]): | ||
A tuple of 2 pandas.Series objects. The first represents the sequence key | ||
of the real data and the second represents a continuous column of data. | ||
synthetic_data (tuple[pd.Series, pd.Series]): | ||
A tuple of 2 pandas.Series objects. The first represents the sequence key | ||
of the synthetic data and the second represents a continuous column of data. | ||
statistic (str): | ||
A string representing the statistic function to use when computing MSAS. | ||
Available options are: | ||
- 'mean': The arithmetic mean of the sequence | ||
- 'median': The median value of the sequence | ||
- 'std': The standard deviation of the sequence | ||
- 'min': The minimum value in the sequence | ||
- 'max': The maximum value in the sequence | ||
Returns: | ||
float: | ||
The similarity score between the real and synthetic data distributions. | ||
""" | ||
statistic_functions = { | ||
'mean': np.mean, | ||
'median': np.median, | ||
'std': np.std, | ||
'min': np.min, | ||
'max': np.max, | ||
} | ||
if statistic not in statistic_functions: | ||
raise ValueError( | ||
f'Invalid statistic: {statistic}.' | ||
f' Choose from [{", ".join(statistic_functions.keys())}].' | ||
) | ||
|
||
for data in [real_data, synthetic_data]: | ||
if ( | ||
not isinstance(data, tuple) | ||
or len(data) != 2 | ||
or (not (isinstance(data[0], pd.Series) and isinstance(data[1], pd.Series))) | ||
): | ||
raise ValueError('The data must be a tuple of two pandas series.') | ||
|
||
real_keys, real_values = real_data | ||
synthetic_keys, synthetic_values = synthetic_data | ||
stat_func = statistic_functions[statistic] | ||
|
||
def calculate_statistics(keys, values): | ||
df = pd.DataFrame({'keys': keys, 'values': values}) | ||
return df.groupby('keys')['values'].agg(stat_func) | ||
|
||
real_stats = calculate_statistics(real_keys, real_values) | ||
synthetic_stats = calculate_statistics(synthetic_keys, synthetic_values) | ||
|
||
return KSComplement.compute(real_stats, synthetic_stats) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
import re | ||
|
||
import pandas as pd | ||
import pytest | ||
|
||
from sdmetrics.timeseries import StatisticMSAS | ||
|
||
|
||
class TestStatisticMSAS: | ||
def test_compute_identical_sequences(self): | ||
"""Test it returns 1 when real and synthetic data are identical.""" | ||
# Setup | ||
real_keys = pd.Series(['id1', 'id1', 'id1', 'id2', 'id2', 'id2']) | ||
real_values = pd.Series([1, 2, 3, 4, 5, 6]) | ||
synthetic_keys = pd.Series(['id3', 'id3', 'id3', 'id4', 'id4', 'id4']) | ||
synthetic_values = pd.Series([1, 2, 3, 4, 5, 6]) | ||
|
||
# Run and Assert | ||
for statistic in ['mean', 'median', 'std', 'min', 'max']: | ||
score = StatisticMSAS.compute( | ||
real_data=(real_keys, real_values), | ||
synthetic_data=(synthetic_keys, synthetic_values), | ||
statistic=statistic, | ||
) | ||
assert score == 1 | ||
|
||
def test_compute_different_sequences(self): | ||
"""Test it for distinct distributions.""" | ||
# Setup | ||
real_keys = pd.Series(['id1', 'id1', 'id1', 'id2', 'id2', 'id2']) | ||
real_values = pd.Series([1, 2, 3, 4, 5, 6]) | ||
synthetic_keys = pd.Series(['id3', 'id3', 'id3', 'id4', 'id4', 'id4']) | ||
synthetic_values = pd.Series([10, 20, 30, 40, 50, 60]) | ||
|
||
# Run and Assert | ||
for statistic in ['mean', 'median', 'std', 'min', 'max']: | ||
score = StatisticMSAS.compute( | ||
real_data=(real_keys, real_values), | ||
synthetic_data=(synthetic_keys, synthetic_values), | ||
statistic=statistic, | ||
) | ||
assert score == 0 | ||
|
||
def test_compute_with_single_sequence(self): | ||
"""Test it with a single sequence.""" | ||
# Setup | ||
real_keys = pd.Series(['id1', 'id1', 'id1']) | ||
real_values = pd.Series([1, 2, 3]) | ||
synthetic_keys = pd.Series(['id2', 'id2', 'id2']) | ||
synthetic_values = pd.Series([1, 2, 3]) | ||
|
||
# Run | ||
score = StatisticMSAS.compute( | ||
real_data=(real_keys, real_values), | ||
synthetic_data=(synthetic_keys, synthetic_values), | ||
statistic='mean', | ||
) | ||
|
||
# Assert | ||
assert score == 1 | ||
|
||
def test_compute_with_different_sequence_lengths(self): | ||
"""Test it with different sequence lengths.""" | ||
# Setup | ||
real_keys = pd.Series(['id1', 'id1', 'id1', 'id2', 'id2']) | ||
real_values = pd.Series([1, 2, 3, 4, 5]) | ||
synthetic_keys = pd.Series(['id2', 'id2', 'id3', 'id4', 'id5']) | ||
synthetic_values = pd.Series([1, 2, 3, 4, 5]) | ||
|
||
# Run | ||
score = StatisticMSAS.compute( | ||
real_data=(real_keys, real_values), | ||
synthetic_data=(synthetic_keys, synthetic_values), | ||
statistic='mean', | ||
) | ||
|
||
# Assert | ||
assert score == 0.75 | ||
|
||
def test_compute_with_invalid_statistic(self): | ||
"""Test it raises ValueError for invalid statistic.""" | ||
# Setup | ||
real_keys = pd.Series(['id1', 'id1', 'id1']) | ||
real_values = pd.Series([1, 2, 3]) | ||
synthetic_keys = pd.Series(['id2', 'id2', 'id2']) | ||
synthetic_values = pd.Series([1, 2, 3]) | ||
|
||
# Run and Assert | ||
err_msg = re.escape( | ||
'Invalid statistic: invalid. Choose from [mean, median, std, min, max].' | ||
) | ||
with pytest.raises(ValueError, match=err_msg): | ||
StatisticMSAS.compute( | ||
real_data=(real_keys, real_values), | ||
synthetic_data=(synthetic_keys, synthetic_values), | ||
statistic='invalid', | ||
) | ||
|
||
def test_compute_invalid_real_data(self): | ||
"""Test that it raises ValueError when real_data is invalid.""" | ||
# Setup | ||
real_data = [[1, 2, 3], [4, 5, 6]] # Not a tuple of pandas Series | ||
synthetic_keys = pd.Series(['id1', 'id1', 'id2', 'id2']) | ||
synthetic_values = pd.Series([1, 2, 3, 4]) | ||
|
||
# Run and Assert | ||
with pytest.raises(ValueError, match='The data must be a tuple of two pandas series.'): | ||
StatisticMSAS.compute( | ||
real_data=real_data, | ||
synthetic_data=(synthetic_keys, synthetic_values), | ||
) | ||
|
||
def test_compute_invalid_synthetic_data(self): | ||
"""Test that it raises ValueError when synthetic_data is invalid.""" | ||
# Setup | ||
real_keys = pd.Series(['id1', 'id1', 'id2', 'id2']) | ||
real_values = pd.Series([1, 2, 3, 4]) | ||
synthetic_data = [[1, 2, 3], [4, 5, 6]] # Not a tuple of pandas Series | ||
|
||
# Run and Assert | ||
with pytest.raises(ValueError, match='The data must be a tuple of two pandas series.'): | ||
StatisticMSAS.compute( | ||
real_data=(real_keys, real_values), | ||
synthetic_data=synthetic_data, | ||
) |