Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support transforming and reversing a subset of the training columns #153

Merged
merged 1 commit into from
Feb 19, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 13 additions & 11 deletions rdt/hyper_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -174,18 +174,19 @@ def transform(self, data):
data = data.copy()

for column_name, transformer in self._transformers.items():
column = data.pop(column_name)
transformed = transformer.transform(column)
if column_name in data:
column = data.pop(column_name)
transformed = transformer.transform(column)

shape = transformed.shape
shape = transformed.shape

if len(shape) == 2:
for index in range(shape[1]):
new_column = '{}#{}'.format(column_name, index)
data[new_column] = transformed[:, index]
if len(shape) == 2:
for index in range(shape[1]):
new_column = '{}#{}'.format(column_name, index)
data[new_column] = transformed[:, index]

else:
data[column_name] = transformed
else:
data[column_name] = transformed

return data

Expand Down Expand Up @@ -224,7 +225,7 @@ def _get_columns(data, column_name):
regex = r'{}(#[0-9]+)?$'.format(re.escape(column_name))
columns = data.columns[data.columns.str.match(regex)]
if columns.empty:
raise ValueError('No columns match_ {}'.format(column_name))
return None

values = [data.pop(column).values for column in columns]

Expand All @@ -249,6 +250,7 @@ def reverse_transform(self, data):

for column_name, transformer in self._transformers.items():
columns = self._get_columns(data, column_name)
data[column_name] = transformer.reverse_transform(columns)
if columns is not None:
data[column_name] = transformer.reverse_transform(columns)

return data
17 changes: 17 additions & 0 deletions tests/integration/test_hyper_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,3 +159,20 @@ def test_empty_transformers():

pd.testing.assert_frame_equal(data, transformed)
pd.testing.assert_frame_equal(data, reverse)


def test_subset_of_columns():
"""HyperTransform should be able to transform a subset of the training columns.

See https://github.com/sdv-dev/RDT/issues/152
"""
data = get_input_data()

ht = HyperTransformer()
ht.fit(data)

subset = data[[data.columns[0]]]
transformed = ht.transform(subset)
reverse = ht.reverse_transform(transformed)

pd.testing.assert_frame_equal(subset, reverse)
7 changes: 4 additions & 3 deletions tests/test_hyper_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,13 +152,14 @@ def test__get_columns_two(self):
])
np.testing.assert_equal(returned, expected)

def test__get_columns_error(self):
def test__get_columns_none(self):
data = pd.DataFrame({
'a': [1, 2, 3],
})

with pytest.raises(ValueError):
HyperTransformer._get_columns(data, 'b')
returned = HyperTransformer._get_columns(data, 'b')

assert returned is None

def test__get_columns_regex(self):
data = pd.DataFrame({
Expand Down