Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix lint dependency checker #137

Merged
merged 4 commits into from
Oct 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .github/workflows/dependency_checker.yml
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ jobs:
run: |
python -m pip install .[dev]
make check-deps OUTPUT_FILEPATH=latest_requirements.txt
make fix-lint
- name: Create pull request
id: cpr
uses: peter-evans/create-pull-request@v4
Expand Down
10 changes: 5 additions & 5 deletions deepecho/models/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,12 +54,12 @@ def fit_sequences(self, sequences, context_types, data_types):
For example, a sequence might look something like::

{
"context": [1],
"data": [
'context': [1],
'data': [
[1, 3, 4, 5, 11, 3, 4],
[2, 2, 3, 4, 5, 1, 2],
[1, 3, 4, 5, 2, 3, 1]
]
[2, 2, 3, 4, 5, 1, 2],
[1, 3, 4, 5, 2, 3, 1],
],
}

The "context" attribute maps to a list of variables which
Expand Down
12 changes: 6 additions & 6 deletions deepecho/models/basic_gan.py
Original file line number Diff line number Diff line change
Expand Up @@ -271,7 +271,7 @@ def _analyze_data(self, sequences, context_types, data_types):
def _normalize(tensor, value, properties):
"""Normalize the value between 0 and 1 and flag nans."""
value_idx, missing_idx = properties['indices']
if pd.isnull(value):
if pd.isna(value):
tensor[value_idx] = 0.0
tensor[missing_idx] = 1.0
else:
Expand Down Expand Up @@ -493,12 +493,12 @@ def fit_sequences(self, sequences, context_types, data_types):
For example, a sequence might look something like::

{
"context": [1],
"data": [
'context': [1],
'data': [
[1, 3, 4, 5, 11, 3, 4],
[2, 2, 3, 4, 5, 1, 2],
[1, 3, 4, 5, 2, 3, 1]
]
[2, 2, 3, 4, 5, 1, 2],
[1, 3, 4, 5, 2, 3, 1],
],
}

The "context" attribute maps to a list of variables which
Expand Down
44 changes: 20 additions & 24 deletions deepecho/models/par.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,7 @@ def _idx_map(self, x, t):
'type': t,
'mu': np.nanmean(x[i]),
'std': np.nanstd(x[i]),
'nulls': pd.isnull(x[i]).any(),
'nulls': pd.isna(x[i]).any(),
'indices': (idx, idx + 1, idx + 2),
}
idx += 3
Expand All @@ -141,7 +141,7 @@ def _idx_map(self, x, t):
'type': t,
'min': np.nanmin(x[i]),
'range': np.nanmax(x[i]) - np.nanmin(x[i]),
'nulls': pd.isnull(x[i]).any(),
'nulls': pd.isna(x[i]).any(),
'indices': (idx, idx + 1, idx + 2),
}
idx += 3
Expand All @@ -150,7 +150,7 @@ def _idx_map(self, x, t):
idx_map[i] = {'type': t, 'indices': {}}
idx += 1
for v in set(x[i]):
if pd.isnull(v):
if pd.isna(v):
v = None

idx_map[i]['indices'][v] = idx
Expand Down Expand Up @@ -210,30 +210,30 @@ def _data_to_tensor(self, data):

elif props['type'] in ['continuous', 'timestamp']:
mu_idx, sigma_idx, missing_idx = props['indices']
if pd.isnull(data[key][i]) or props['std'] == 0:
if pd.isna(data[key][i]) or props['std'] == 0:
x[mu_idx] = 0.0
else:
x[mu_idx] = (data[key][i] - props['mu']) / props['std']

x[sigma_idx] = 0.0
x[missing_idx] = 1.0 if pd.isnull(data[key][i]) else 0.0
x[missing_idx] = 1.0 if pd.isna(data[key][i]) else 0.0

elif props['type'] in ['count']:
r_idx, p_idx, missing_idx = props['indices']
if pd.isnull(data[key][i]) or props['range'] == 0:
if pd.isna(data[key][i]) or props['range'] == 0:
x[r_idx] = 0.0
else:
x[r_idx] = (data[key][i] - props['min']) / props['range']

x[p_idx] = 0.0
x[missing_idx] = 1.0 if pd.isnull(data[key][i]) else 0.0
x[missing_idx] = 1.0 if pd.isna(data[key][i]) else 0.0

elif props['type'] in [
'categorical',
'ordinal',
]: # categorical
value = data[key][i]
if pd.isnull(value):
if pd.isna(value):
value = None
x[props['indices'][value]] = 1.0

Expand All @@ -258,25 +258,25 @@ def _context_to_tensor(self, context):
mu_idx, sigma_idx, missing_idx = props['indices']
x[mu_idx] = (
0.0
if (pd.isnull(context[key]) or props['std'] == 0)
if (pd.isna(context[key]) or props['std'] == 0)
else (context[key] - props['mu']) / props['std']
)
x[sigma_idx] = 0.0
x[missing_idx] = 1.0 if pd.isnull(context[key]) else 0.0
x[missing_idx] = 1.0 if pd.isna(context[key]) else 0.0

elif props['type'] in ['count']:
r_idx, p_idx, missing_idx = props['indices']
x[r_idx] = (
0.0
if (pd.isnull(context[key]) or props['range'] == 0)
if (pd.isna(context[key]) or props['range'] == 0)
else (context[key] - props['min']) / props['range']
)
x[p_idx] = 0.0
x[missing_idx] = 1.0 if pd.isnull(context[key]) else 0.0
x[missing_idx] = 1.0 if pd.isna(context[key]) else 0.0

elif props['type'] in ['categorical', 'ordinal']:
value = context[key]
if pd.isnull(value):
if pd.isna(value):
value = None
x[props['indices'][value]] = 1.0

Expand All @@ -295,12 +295,12 @@ def fit_sequences(self, sequences, context_types, data_types):
For example, a sequence might look something like::

{
"context": [1],
"data": [
'context': [1],
'data': [
[1, 3, 4, 5, 11, 3, 4],
[2, 2, 3, 4, 5, 1, 2],
[1, 3, 4, 5, 2, 3, 1]
]
[2, 2, 3, 4, 5, 1, 2],
[1, 3, 4, 5, 2, 3, 1],
],
}

The "context" attribute maps to a list of variables which
Expand Down Expand Up @@ -406,9 +406,7 @@ def _compute_loss(self, X_padded, Y_padded, seq_len):
p_true = X_padded[: seq_len[i], i, missing_idx]
p_pred = missing[: seq_len[i], i]
log_likelihood += torch.sum(p_true * p_pred)
log_likelihood += torch.sum(
(1.0 - p_true) * torch.log(1.0 - torch.exp(p_pred))
)
log_likelihood += torch.sum((1.0 - p_true) * torch.log(1.0 - torch.exp(p_pred)))

elif props['type'] in ['count']:
r_idx, p_idx, missing_idx = props['indices']
Expand All @@ -428,9 +426,7 @@ def _compute_loss(self, X_padded, Y_padded, seq_len):
p_true = X_padded[: seq_len[i], i, missing_idx]
p_pred = missing[: seq_len[i], i]
log_likelihood += torch.sum(p_true * p_pred)
log_likelihood += torch.sum(
(1.0 - p_true) * torch.log(1.0 - torch.exp(p_pred))
)
log_likelihood += torch.sum((1.0 - p_true) * torch.log(1.0 - torch.exp(p_pred)))

elif props['type'] in ['categorical', 'ordinal']:
idx = list(props['indices'].values())
Expand Down
6 changes: 3 additions & 3 deletions deepecho/sequences.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ def segment_by_time(sequence, segment_size, sequence_index):
while start <= max_time:
end = start + segment_size
selected = (start <= sequence_index) & (sequence_index < end)
sequences.append(sequence[selected.values].reset_index(drop=True))
sequences.append(sequence[selected.to_numpy()].reset_index(drop=True))
start = end

return sequences
Expand Down Expand Up @@ -112,7 +112,7 @@ def _convert_to_dicts(segments, context_columns):
if len(context.drop_duplicates()) > 1:
raise ValueError('Context columns are not constant within each segment.')

context = context.iloc[0].values
context = context.iloc[0].to_numpy()
segment = segment.drop(context_columns, axis=1)
else:
context = []
Expand Down Expand Up @@ -180,7 +180,7 @@ def assemble_sequences(
segments = []
groupby_columns = entity_columns[0] if len(entity_columns) == 1 else entity_columns
for _, sequence in data.groupby(groupby_columns):
sequence.drop(entity_columns, axis=1, inplace=True)
sequence = sequence.drop(entity_columns, axis=1)
if context_columns:
if len(sequence[context_columns].drop_duplicates()) > 1:
raise ValueError('Context columns are not constant within each entity.')
Expand Down
30 changes: 25 additions & 5 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ dev = [
'watchdog>=1.0.1,<5',

# style check
'ruff>=0.3.2,<0.7.2',
'ruff>=0.3.2,<1',

# distribute on PyPI
'twine>=1.10.0,<4',
Expand Down Expand Up @@ -160,15 +160,18 @@ build-backend = 'setuptools.build_meta'

[tool.ruff]
preview = true
line-length = 99
line-length = 100
indent-width = 4
src = ["deepecho"]
target-version = "py312"
exclude = [
"docs",
".tox",
".git",
"__pycache__",
".ipynb_checkpoints"
"*.ipynb",
".ipynb_checkpoints",
"tasks.py",
]

[tool.ruff.lint]
Expand All @@ -178,20 +181,31 @@ select = [
# Pycodestyle
"E",
"W",
# pydocstyle
"D",
# isort
"I001"
"I001",
# print statements
"T201",
# pandas-vet
"PD",
# numpy 2.0
"NPY201"
]
ignore = [
"E501",
# pydocstyle
"D107", # Missing docstring in __init__
"D417", # Missing argument descriptions in the docstring, this is a bug from pydocstyle: https://github.com/PyCQA/pydocstyle/issues/449
"PD901",
"PD101",
]

[tool.ruff.lint.pep8-naming]
extend-ignore-names = ["X", "C", "X_padded", "Y", "Y_padded"]

[tool.ruff.lint.isort]
known-first-party = ["deepecho"]
lines-between-types = 0

[tool.ruff.lint.per-file-ignores]
"__init__.py" = ["F401", "E402", "F403", "F405", "E501", "I001"]
Expand All @@ -200,6 +214,12 @@ known-first-party = ["deepecho"]
quote-style = "single"
indent-style = "space"
preview = true
docstring-code-format = true
docstring-code-line-length = "dynamic"

[tool.ruff.lint.pydocstyle]
convention = "google"

[tool.ruff.lint.pycodestyle]
max-doc-length = 100
max-line-length = 100
Loading