Skip to content

Commit

Permalink
UPD: typo/warning in documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
Thibault Cordier committed Jan 3, 2024
1 parent cbdc26d commit 7efe25e
Show file tree
Hide file tree
Showing 10 changed files with 13 additions and 10 deletions.
4 changes: 3 additions & 1 deletion HISTORY.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,9 @@ History

##### (##########)
------------------

0.8.0 (2024-01-03)
------------------
* Add Adaptative Conformal Inference (ACI) method for MapieTimeSeriesRegressor.
* Add Coverage Width-based Criterion (CWC) metric.
* Allow to use more split methods for MapieRegressor (ShuffleSplit, PredefinedSplit).
Expand All @@ -13,7 +16,6 @@ History
* Add new checks for metrics calculations.
* Fix reference for residual normalised score in documentation.


0.7.0 (2023-09-14)
------------------

Expand Down
Binary file modified doc/images/quickstart_1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
1 change: 1 addition & 0 deletions doc/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@

theoretical_description_multilabel_classification
examples_multilabel_classification/1-quickstart/plot_tutorial_multilabel_classification
notebooks_multilabel_classification

.. toctree::
:maxdepth: 2
Expand Down
2 changes: 1 addition & 1 deletion doc/notebooks_calibration.rst
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
Calibration notebooks
========================
=====================

The following examples present advanced analyses on multi-class calibration.

Expand Down
6 changes: 3 additions & 3 deletions doc/notebooks_multilabel_classification.rst
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
Multi-label Classification notebooks
===========================
====================================

The following examples present advanced analyses
on multi-label classification problems with different
methods proposed in MAPIE.

1. Overview of Recall Control for Multi-Label Classification : `notebook <https://github.com/scikit-learn-contrib/MAPIE/tree/master/notebooks/classification/tutorial_multilabel_classification_recall.ipynb>`_
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

2. Overview of Precision Control for Multi-Label Classification : `notebook <https://github.com/scikit-learn-contrib/MAPIE/tree/master/notebooks/classification/tutorial_multilabel_classification_precision.ipynb>`_
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2 changes: 1 addition & 1 deletion doc/notebooks_regression.rst
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,6 @@ This section lists a series of Jupyter notebooks hosted on the MAPIE Github repo


3. Estimating prediction intervals for time series forecast with EnbPI and ACI : `notebook <https://github.com/scikit-learn-contrib/MAPIE/tree/master/notebooks/regression/ts-changepoint.ipynb>`_
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


2 changes: 1 addition & 1 deletion doc/theoretical_description_calibration.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
.. title:: Theoretical Description : contents

.. _theoretical_description_calibration
.. _theoretical_description_calibration:

=======================
Theoretical Description
Expand Down
2 changes: 1 addition & 1 deletion doc/theoretical_description_classification.rst
Original file line number Diff line number Diff line change
Expand Up @@ -142,7 +142,7 @@ of the last label in the prediction set. This randomization is done as follows:

- First : define the :math:`V` parameter:
.. math::
V_i = (s_i(X_i, Y_i) - \hat{q}_{1-\alpha}) / \left(\hat{\mu}(X_i)_{\pi_k} + \lambda \mathbb{1} (k > k_{reg})\right)
V_i = (s_i(X_i, Y_i) - \hat{q}_{1-\alpha}) / \left(\hat{\mu}(X_i)_{\pi_k} + \lambda \mathbb{1} (k > k_{reg})\right)
- Compare each :math:`V_i` to :math:`U \sim` Unif(0, 1)
- If :math:`V_i \leq U`, the last included label is removed, else we keep the prediction set as it is.

Expand Down
2 changes: 1 addition & 1 deletion doc/theoretical_description_regression.rst
Original file line number Diff line number Diff line change
Expand Up @@ -272,7 +272,7 @@ regressions when using :class:`mapie.quantile_regression.MapieQuantileRegressor`


10. The ensemble batch prediction intervals (EnbPI) method
=========================================================
==========================================================

The coverage guarantee offered by the various resampling methods based on the
jackknife strategy, and implemented in MAPIE, are only valid under the "exchangeability
Expand Down
2 changes: 1 addition & 1 deletion mapie/regression/time_series_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ class MapieTimeSeriesRegressor(MapieRegressor):
Isaac Gibbs, Emmanuel Candes
"Adaptive conformal inference under distribution shift"
https://proceedings.neurips.cc/paper/2021/file/\
0d441de75945e5acbc865406fc9a2559-Paper.pdf
0d441de75945e5acbc865406fc9a2559-Paper.pdf
Margaux Zaffran et al.
"Adaptive Conformal Predictions for Time Series"
Expand Down

0 comments on commit 7efe25e

Please sign in to comment.