-
Notifications
You must be signed in to change notification settings - Fork 89
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
chore: add autodiff/eager_forward.py to studies directory
Files in the studies directory don't affect anything; I'll commit this directly to main.
- Loading branch information
Showing
1 changed file
with
142 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
# Eager, forward-mode autodiff (autograd) | ||
# Backpropagation will probably require collecting a DAG with a typetracer or Dask | ||
# | ||
# Presented at https://indico.cern.ch/event/1387764/ | ||
# | ||
# The following are good references: | ||
# | ||
# https://www.hedonisticlearning.com/posts/complex-step-differentiation.html | ||
# https://researchrepository.wvu.edu/faculty_publications/426/ | ||
|
||
import numpy as np | ||
from numpy.lib.mixins import NDArrayOperatorsMixin | ||
|
||
class diffarray(NDArrayOperatorsMixin): | ||
__slots__ = ("_array",) | ||
|
||
@classmethod | ||
def _build(cls, complex_array): | ||
"Manual constructor from a `complex_array`." | ||
self = cls.__new__(cls) | ||
self._array = complex_array | ||
return self | ||
|
||
def __init__(self, primal, tangent=None, *, dtype=None): | ||
"Constructor for floating-point `primal` and (optional) `tangent`." | ||
if dtype is None: | ||
dtype = primal.dtype.type | ||
elif isinstance(dtype, np.dtype): | ||
dtype = dtype.type | ||
|
||
if issubclass(dtype, np.float32): | ||
self._array = primal.astype(np.complex64) | ||
elif issubclass(dtype, np.float64): | ||
self._array = primal.astype(np.complex128) | ||
else: | ||
raise TypeError("only float32 or float64 arrays can be differentiated") | ||
|
||
self._array += (1 if tangent is None else tangent) * 1j * self._step_scale | ||
|
||
@property | ||
def _step_scale(self): | ||
"Size of the complex step; half precision of 1.0." | ||
return 1e-4 if issubclass(self._array.dtype.type, np.complex128) else 1e-8 | ||
|
||
@property | ||
def primal(self): | ||
"Array of primary values." | ||
return np.real(self._array) | ||
|
||
@property | ||
def tangent(self): | ||
"Array of derivatives." | ||
return np.imag(self._array) / self._step_scale | ||
|
||
def __str__(self): | ||
primal = str(self.primal).replace("\n", "\n ") | ||
tangent = str(self.tangent).replace("\n", "\n ") | ||
return f"primal: {primal}\ntangent: {tangent}" | ||
|
||
def __repr__(self): | ||
primal = str(self.primal).replace("\n", "\n ") | ||
tangent = str(self.tangent).replace("\n", "\n ") | ||
dtype = "" | ||
if issubclass(self._array.dtype.type, np.complex64): | ||
dtype = ",\n dtype=np.float32" | ||
return f"diffarray({primal},\n {tangent}{dtype})" | ||
|
||
def _prepare(self, args, kwargs): | ||
"Used in NEP-13 and NEP-18 overrides." | ||
cls = type(self) | ||
args = [x._array if isinstance(x, cls) else x for x in args] | ||
kwargs = {k: v._array if isinstance(x, cls) else v for k, v in kwargs.items()} | ||
return cls, args, kwargs | ||
|
||
def __array_ufunc__(self, ufunc, method, *args, **kwargs): | ||
"https://numpy.org/neps/nep-0013-ufunc-overrides.html" | ||
if ufunc.__name__ == "absolute": | ||
# interpret `absolute` only on the primal | ||
if len(kwargs) != 0: | ||
raise NotImplementedError("kwargs in np.absolute") | ||
arg = args[0]._array | ||
out = arg.copy() | ||
out[arg.real < 0] *= -1 | ||
return type(self)._build(out) | ||
|
||
if ufunc.__name__ in ( | ||
"less", "less_equal", "equal", "not_equal", "greater", "greater_equal" | ||
): | ||
# do comparisons only on the primal | ||
cls = type(self) | ||
args = [x._array.real if isinstance(x, cls) else x for x in args] | ||
return getattr(ufunc, method)(*args, **kwargs) | ||
|
||
cls, prepared_args, prepared_kwargs = self._prepare(args, kwargs) | ||
out = getattr(ufunc, method)(*prepared_args, **prepared_kwargs) | ||
if issubclass(out.dtype.type, np.complexfloating): | ||
return cls._build(out) | ||
else: | ||
return out | ||
|
||
def __array_function__(self, func, types, args, kwargs): | ||
"https://numpy.org/neps/nep-0018-array-function-protocol.html" | ||
if func.__name__ == "real": | ||
# interpret `real` only on the primal | ||
return type(self)._build(args[0]._array) | ||
if func.__name__ == "imag": | ||
# interpret `imag` only on the primal | ||
return type(self)._build(args[0]._array * 0) | ||
|
||
cls, prepared_args, prepared_kwargs = self._prepare(args, kwargs) | ||
out = func(*prepared_args, **prepared_kwargs) | ||
if issubclass(out.dtype.type, np.complexfloating): | ||
return cls._build(out) | ||
else: | ||
return out | ||
|
||
def __getitem__(self, where): | ||
out = self._array[where] | ||
if isinstance(out, np.complexfloating): | ||
# NumPy returns a scalar; CuPy and Array API return an array | ||
# we return an array to keep derivatives | ||
return type(self)._build(np.asarray(out)) | ||
return out | ||
|
||
# >>> x = np.linspace(-20, 20, 10000) | ||
# >>> da_x = diffarray(x) | ||
# >>> da_y = np.sin(da_x) / da_x | ||
# >>> da_x | ||
# diffarray([-20. -19.9959996 -19.9919992 ... 19.9919992 19.9959996 | ||
# 20. ], | ||
# [1. 1. 1. ... 1. 1. 1.]) | ||
# >>> da_y | ||
# diffarray([0.04564726 0.04557439 0.04550076 ... 0.04550076 0.04557439 0.04564726], | ||
# [-0.01812174 -0.01831149 -0.01850102 ... 0.01850102 0.01831149 | ||
# 0.01812174]) | ||
# >>> abs(da_y.tangent - ((x*np.cos(x) - np.sin(x)) / x**2)).max() | ||
# 3.9683650809863025e-10 | ||
# >>> import matplotlib.pyplot as plt | ||
# >>> plt.plot(x, da_y.tangent) | ||
# >>> plt.plot(x, (x*np.cos(x) - np.sin(x)) / x**2, ls="--") | ||
# | ||
# See https://gist.github.com/jpivarski/8dc48a87bae7a856848f87e36b9d244d for the plot |