Skip to content

sambanova/SN-13B-8k-Instruct

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 

Repository files navigation

SN-13B-8k-Instruct

Basic Information

Reproducibility Information

This repo contains the reproducibility information for the numbers listed in the SN-13B-8k-Instruct blogpost. Scrolls and ZeroScrolls refer to the following benchmarks:

  1. Scrolls Benchmark
  2. ZeroScrolls Benchmark

Setup Eleuther AI LM Evaluation Harness

  1. git clone https://github.com/EleutherAI/lm-evaluation-harness.git
  2. Checkout the commit of LM Evaluation Harness that we used to collect the results:
git checkout fe803c2920a85f6afb74ea05d1d2f98ec27f1a63`
  1. Follow the setup instructions specified in the repository's README.

ZeroScrolls Reproducibility

  1. Add ZeroScrolls task code to the LM Evaluation Harness.
    • This will involve importing the zero scrolls tasks in the tasks/__init__.py file in LM Evaluation Harness. You will need to add the following line to the TASK_REGISTRY:
    **zero_scrolls.construct_tasks(),
  2. Install requirements
pip install requirements.txt
  1. Run the following command in the LM Evaluation Harness:
python main.py --batch_size 1 --tasks zero_scrolls_gov_report,zero_scrolls_summ_screen_fd,zero_scrolls_qm_sum,zero_scrolls_squality,zero_scrolls_qasper,zero_scrolls_narrative_qa,zero_scrolls_quality,zero_scrolls_musique,zero_scrolls_space_digest,zero_scrolls_book_sum_sort --model gpt2 --model_args pretrained=sambanovasystems/SN-13B-8k-Instruct,dtype=float16 --num_fewshot 0 --no_cache

Scrolls Reproducibility

  1. In the LM Evaluation Harness, open tasks/scrolls.py and replace the '\n' with your model's end of text token in the until list for all greedy_until requests.
  2. Run the following command in the LM Evaluation Harness:
python main.py --batch_size 1 --tasks scrolls_govreport,scrolls_qmsum,scrolls_quality,scrolls_summscreenfd --model gpt2 --model_args pretrained=sambanovasystems/SN-13B-8k-Instruct,dtype=float16 --num_fewshot 0  --no_cache

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages