Skip to content

salesforce/xgen

Folders and files

NameName
Last commit message
Last commit date

Latest commit

462c2a9 · Oct 16, 2023

History

35 Commits
Jun 23, 2023
Jun 23, 2023
Jun 23, 2023
Oct 16, 2023
Jun 23, 2023
Jul 3, 2023
Jun 28, 2023

XGen

Official research release for the family of XGen models (7B) by Salesforce AI Research:

Title: Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length

Authors: Erik Nijkamp*, Tian Xie*, Hiroaki Hayashi*, Bo Pang*, Congying Xia*, Chen Xing, Jesse Vig, Semih Yavuz, Philippe Laban, Ben Krause, Senthil Purushwalkam, Tong Niu, Wojciech Kryscinski, Lidiya Murakhovs'ka, Prafulla Kumar Choubey, Alex Fabbri, Ye Liu, Rui Meng, Lifu Tu, Meghana Bhat, Chien-Sheng Wu, Silvio Savarese, Yingbo Zhou, Shafiq Rayhan Joty, Caiming Xiong.

(* indicates equal contribution)

Correspondence to: Shafiq Rayhan Joty, Caiming Xiong

Models

Model cards are published on the HuggingFace Hub:

The tokenization uses the OpenAI Tiktoken package, which can be installed via pip:

pip install tiktoken

The models can be used as auto-regressive samplers as follows:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Salesforce/xgen-7b-8k-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Salesforce/xgen-7b-8k-base", torch_dtype=torch.bfloat16)
inputs = tokenizer("The world is", return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0]))

Citation

@misc{XGen,
  title={Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length},
  author={Erik Nijkamp, Tian Xie, Hiroaki Hayashi, Bo Pang, Congying Xia, Chen Xing, Jesse Vig, Semih Yavuz, Philippe Laban, Ben Krause, Senthil Purushwalkam, Tong Niu, Wojciech Kryscinski, Lidiya Murakhovs'ka, Prafulla Kumar Choubey, Alex Fabbri, Ye Liu, Rui Meng, Lifu Tu, Meghana Bhat, Chien-Sheng Wu, Silvio Savarese, Yingbo Zhou, Shafiq Rayhan Joty, Caiming Xiong},
  howpublished={ArXiv},
  year={2023},
  url={https://arxiv.org/abs/2309.03450}
}