Skip to content

Commit

Permalink
Improve test coverage for VectorsCombiner and make vector aggregator …
Browse files Browse the repository at this point in the history
…efficient (#168)
  • Loading branch information
tovbinm authored Nov 1, 2018
1 parent 0ad3c28 commit ab521f8
Show file tree
Hide file tree
Showing 14 changed files with 318 additions and 80 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ import com.salesforce.op.stages.AllowLabelAsInput
import com.salesforce.op.stages.base.binary.{BinaryEstimator, BinaryModel}
import com.salesforce.op.utils.spark.OpVectorColumnMetadata
import com.salesforce.op.utils.spark.RichDataset._
import com.salesforce.op.utils.spark.RichVector._
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.types.Metadata

Expand Down Expand Up @@ -163,7 +164,7 @@ final class DecisionTreeNumericMapBucketizerModel[I2 <: OPMap[_]] private[op]
input = cleanedInputMap.get(k)
)
}
VectorsCombiner.combine(vectors).toOPVector
combine(vectors).toOPVector
}

}
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ import com.salesforce.op.features.types._
import com.salesforce.op.stages.OpPipelineStageBase
import com.salesforce.op.stages.base.sequence.SequenceTransformer
import com.salesforce.op.utils.spark.{OpVectorColumnMetadata, OpVectorMetadata}
import com.salesforce.op.utils.spark.RichVector._
import org.apache.spark.ml.linalg.{DenseVector, SparseVector}
import org.apache.spark.ml.param._
import org.apache.spark.mllib.feature.HashingTF
Expand Down Expand Up @@ -265,7 +266,7 @@ private[op] trait HashingFun {
fNameHashesWithInputs.map { case (featureNameHash, el) =>
hasher.transform(prepare[T](el, params.hashWithIndex, params.prependFeatureName, featureNameHash)).asML
}
VectorsCombiner.combine(hashedVecs).toOPVector
combine(hashedVecs).toOPVector
}
}
}
Expand Down Expand Up @@ -379,7 +380,7 @@ private[op] trait MapHashingFun extends HashingFun {
prepare[TextList](el, params.hashWithIndex, params.prependFeatureName, featureNameHash)
).asML
})
VectorsCombiner.combine(hashedVecs.flatten).toOPVector
combine(hashedVecs.flatten).toOPVector
}
}
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -264,7 +264,8 @@ final class SmartTextMapVectorizerModel[T <: OPMap[String]] private[op]
val textVector = hash(rowTextTokenized, keysText, args.hashingParams)
val textNullIndicatorsVector =
if (args.shouldTrackNulls) Seq(getNullIndicatorsVector(keysText, rowTextTokenized)) else Nil
VectorsCombiner.combineOP(Seq(categoricalVector, textVector) ++ textNullIndicatorsVector)

categoricalVector.combine(textVector, textNullIndicatorsVector: _*)
}

private def getNullIndicatorsVector(keysSeq: Seq[Seq[String]], inputs: Seq[Map[String, TextList]]): OPVector = {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -216,7 +216,7 @@ final class SmartTextVectorizerModel[T <: Text] private[op]
val textVector: OPVector = hash[TextList](textTokens, getTextTransientFeatures, args.hashingParams)
val textNullIndicatorsVector = if (args.shouldTrackNulls) Seq(getNullIndicatorsVector(textTokens)) else Seq.empty

VectorsCombiner.combineOP(Seq(categoricalVector, textVector) ++ textNullIndicatorsVector)
categoricalVector.combine(textVector, textNullIndicatorsVector: _*)
}
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -81,42 +81,9 @@ class VectorsCombiner(uid: String = UID[VectorsCombiner])

final class VectorsCombinerModel private[op] (operationName: String, uid: String)
extends SequenceModel[OPVector, OPVector](operationName = operationName, uid = uid) {
def transformFn: Seq[OPVector] => OPVector = VectorsCombiner.combineOP
}

case object VectorsCombiner {

/**
* Combine multiple OP vectors into one
*
* @param vectors input vectors
* @return result vector
*/
def combineOP(vectors: Seq[OPVector]): OPVector = {
new OPVector(combine(vectors.view.map(_.value)))
}

/**
* Combine multiple vectors into one
*
* @param vectors input vectors
* @return result vector
*/
def combine(vectors: Seq[Vector]): Vector = {
val indices = ArrayBuffer.empty[Int]
val values = ArrayBuffer.empty[Double]

val size = vectors.foldLeft(0)((size, vector) => {
vector.foreachActive { case (i, v) =>
if (v != 0.0) {
indices += size + i
values += v
}
}
size + vector.size
})
Vectors.sparse(size, indices.toArray, values.toArray).compressed
def transformFn: Seq[OPVector] => OPVector = s => s.toList match {
case v1 :: v2 :: tail => v1.combine(v2, tail: _*)
case v :: Nil => v
case Nil => OPVector.empty
}

}

Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ class SmartTextVectorizerTest
val textRes = transformed.collect(textVectorized)
assertNominal(fieldText, Array.fill(textRes.head.value.size)(false), textRes)
val (smart, expected) = result.map { case (smartVector, categoricalVector, textVector, nullVector) =>
val combined = VectorsCombiner.combineOP(Seq(categoricalVector, textVector, nullVector))
val combined = categoricalVector.combine(textVector, nullVector)
smartVector -> combined
}.unzip

Expand Down Expand Up @@ -139,7 +139,7 @@ class SmartTextVectorizerTest
val textRes = transformed.collect(textVectorized)
assertNominal(fieldText, Array.fill(textRes.head.value.size)(false), textRes)
val (smart, expected) = result.map { case (smartVector, textVector, nullVector) =>
val combined = VectorsCombiner.combineOP(Seq(textVector, nullVector))
val combined = textVector.combine(nullVector)
smartVector -> combined
}.unzip

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,31 +31,42 @@
package com.salesforce.op.stages.impl.feature

import com.salesforce.op._
import com.salesforce.op.features.types.Text
import com.salesforce.op.features.{FeatureLike, TransientFeature}
import com.salesforce.op.test.PassengerSparkFixtureTest
import com.salesforce.op.features.TransientFeature
import com.salesforce.op.features.types.{Text, _}
import com.salesforce.op.stages.base.sequence.SequenceModel
import com.salesforce.op.test.{OpEstimatorSpec, PassengerSparkFixtureTest, TestFeatureBuilder}
import com.salesforce.op.testkit.{RandomReal, RandomVector}
import com.salesforce.op.utils.spark.OpVectorMetadata
import com.salesforce.op.utils.spark.RichMetadata._
import org.apache.spark.ml.linalg.Vectors
import org.junit.runner.RunWith
import org.scalatest.FlatSpec
import org.scalatest.junit.JUnitRunner
import com.salesforce.op.utils.spark.RichMetadata._


@RunWith(classOf[JUnitRunner])
class VectorsCombinerTest extends FlatSpec with PassengerSparkFixtureTest {
class VectorsCombinerTest
extends OpEstimatorSpec[OPVector, SequenceModel[OPVector, OPVector], VectorsCombiner]
with PassengerSparkFixtureTest {

val vectors = Seq(
Vectors.sparse(4, Array(0, 3), Array(1.0, 1.0)),
Vectors.dense(Array(2.0, 3.0, 4.0)),
Vectors.sparse(4, Array(1), Array(777.0))
)
val expected = Vectors.sparse(11, Array(0, 3, 4, 5, 6, 8), Array(1.0, 1.0, 2.0, 3.0, 4.0, 777.0))
override def specName: String = classOf[VectorsCombiner].getSimpleName

Spec[VectorsCombiner] should "combine vectors correctly" in {
val combined = VectorsCombiner.combine(vectors)
assert(combined.compressed == combined, "combined is expected to be compressed")
combined shouldBe expected
}
val (inputData, f1, f2) = TestFeatureBuilder(Seq(
Vectors.sparse(4, Array(0, 3), Array(1.0, 1.0)).toOPVector ->
Vectors.sparse(4, Array(0, 3), Array(2.0, 3.0)).toOPVector,
Vectors.dense(Array(2.0, 3.0, 4.0)).toOPVector ->
Vectors.dense(Array(12.0, 13.0, 14.0)).toOPVector,
// Purposely added some very large sparse vectors to verify the efficiency
Vectors.sparse(100000000, Array(1), Array(777.0)).toOPVector ->
Vectors.sparse(500000000, Array(0), Array(888.0)).toOPVector
))

val estimator = new VectorsCombiner().setInput(f1, f2)

val expectedResult = Seq(
Vectors.sparse(8, Array(0, 3, 4, 7), Array(1.0, 1.0, 2.0, 3.0)).toOPVector,
Vectors.dense(Array(2.0, 3.0, 4.0, 12.0, 13.0, 14.0)).toOPVector,
Vectors.sparse(600000000, Array(1, 100000000), Array(777.0, 888.0)).toOPVector
)

it should "combine metadata correctly" in {
val vector = Seq(height, description, stringMap).transmogrify()
Expand All @@ -69,12 +80,11 @@ class VectorsCombinerTest extends FlatSpec with PassengerSparkFixtureTest {
}

it should "create metadata correctly" in {
val descVect = description.map[Text]{
t =>
Text(t.value match {
case Some(text) => "this is dumb " + text
case None => "some STUFF to tokenize"
})
val descVect = description.map[Text] { t =>
Text(t.value match {
case Some(text) => "this is dumb " + text
case None => "some STUFF to tokenize"
})
}.tokenize().tf(numTerms = 5)
val vector = Seq(height, stringMap, descVect).transmogrify()
val Seq(inputs1, inputs2, inputs3) = vector.parents
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ object MonoidAggregatorDefaults {

val aggregator = weakTypeOf[O] match {
// Vector
case wt if wt =:= weakTypeOf[OPVector] => UnionVector
case wt if wt =:= weakTypeOf[OPVector] => CombineVector

// Lists
case wt if wt =:= weakTypeOf[TextList] => ConcatTextList
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,19 +32,29 @@ package com.salesforce.op.aggregators

import com.salesforce.op.features.types._
import com.twitter.algebird._
import com.salesforce.op.utils.spark.RichVector._
import org.apache.spark.ml.linalg.{Vector, Vectors}

import scala.reflect.runtime.universe._

/**
* Aggregator that gives the union of Vector data
*/
case object UnionVector
case object CombineVector
extends MonoidAggregator[Event[OPVector], Vector, OPVector]
with AggregatorDefaults[OPVector] {
implicit val ttag = weakTypeTag[OPVector]
val ftFactory = FeatureTypeFactory[OPVector]()
val monoid: Monoid[Vector] = Monoid.from(Vectors.zeros(0))((v1: Vector, v2: Vector) =>
Vectors.dense(v1.toArray ++ v2.toArray)
)
val monoid: Monoid[Vector] = Monoid.from(Vectors.zeros(0))(_ combine _)
}

/**
* Aggregator that gives the sum of Vector data
*/
case object SumVector
extends MonoidAggregator[Event[OPVector], Vector, OPVector]
with AggregatorDefaults[OPVector] {
implicit val ttag = weakTypeTag[OPVector]
val ftFactory = FeatureTypeFactory[OPVector]()
val monoid: Monoid[Vector] = Monoid.from(Vectors.zeros(0))(_ + _)
}
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@

package com.salesforce.op.features.types

import com.salesforce.op.utils.spark.RichVector._
import org.apache.spark.ml.linalg._

/**
Expand All @@ -39,8 +40,46 @@ import org.apache.spark.ml.linalg._
*/
class OPVector(val value: Vector) extends OPCollection {
type Value = Vector

final def isEmpty: Boolean = value.size == 0

/**
* Add vectors
*
* @param that another vector
* @throws IllegalArgumentException if the vectors have different sizes
* @return vector addition
*/
def +(that: OPVector): OPVector = (value + that.value).toOPVector

/**
* Subtract vectors
*
* @param that another vector
* @throws IllegalArgumentException if the vectors have different sizes
* @return vector subtraction
*/
def -(that: OPVector): OPVector = (value - that.value).toOPVector

/**
* Dot product between vectors
*
* @param that another vector
* @throws IllegalArgumentException if the vectors have different sizes
* @return dot product
*/
def dot(that: OPVector): Double = value dot that.value

/**
* Combine multiple vectors into one
*
* @param that another vector
* @param other other vectors
* @return result vector
*/
def combine(that: OPVector, other: OPVector*): OPVector = value.combine(that.value, other.map(_.value): _*).toOPVector
}

object OPVector {
def apply(value: Vector): OPVector = new OPVector(value)
def empty: OPVector = FeatureTypeDefaults.OPVector
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,9 @@
package com.salesforce.op.utils.spark

import breeze.linalg.{DenseVector => BreezeDenseVector, SparseVector => BreezeSparseVector, Vector => BreezeVector}
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector}
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector, Vectors}

import scala.collection.mutable.ArrayBuffer

/**
* [[org.apache.spark.ml.linalg.Vector]] enrichment functions
Expand Down Expand Up @@ -64,6 +66,30 @@ object RichVector {
toSpark(res)
}

/**
* Dot product between vectors
*
* @param that another vector
* @throws IllegalArgumentException if the vectors have different sizes
* @return dot product
*/
def dot(that: Vector): Double = {
require(v.size == that.size,
s"Vectors must have the same length: a.length == b.length (${v.size} != ${that.size})"
)
v.toBreeze dot that.toBreeze
}

/**
* Combine multiple vectors into one
*
* @param that another vector
* @param other other vectors
* @return result vector
*/
def combine(that: Vector, other: Vector*): Vector =
com.salesforce.op.utils.spark.RichVector.combine(v +: that +: other)

/**
* Convert to [[breeze.linalg.Vector]]
*
Expand All @@ -85,4 +111,26 @@ object RichVector {

}

/**
* Combine multiple vectors into one
*
* @param vectors input vectors
* @return result vector
*/
def combine(vectors: Seq[Vector]): Vector = {
val indices = ArrayBuffer.empty[Int]
val values = ArrayBuffer.empty[Double]

val size = vectors.foldLeft(0)((size, vector) => {
vector.foreachActive { case (i, v) =>
if (v != 0.0) {
indices += size + i
values += v
}
}
size + vector.size
})
Vectors.sparse(size, indices.toArray, values.toArray).compressed
}

}
Original file line number Diff line number Diff line change
Expand Up @@ -519,10 +519,20 @@ class MonoidAggregatorDefaultsTest extends FlatSpec with TestCommon {
assertDefaultAggr(multiPickListMapTestSeq, expectedRes)
}

Spec(UnionVector.getClass) should "work" in {
Spec(CombineVector.getClass) should "work" in {
assertDefaultAggr(vectorTestSeq, Vectors.dense(Array(0.1, 0.2, 1.0, 0.2)))
}

Spec(SumVector.getClass) should "work" in {
val vectors = Seq(Array(0.1, 0.2), Array(1.0, -1.5), Array(0.2, 0.0)).map(Vectors.dense(_).toOPVector)
assertAggr(SumVector, vectors, Vectors.dense(Array(1.3, -1.3)))
}
it should "error on vectors of invalid sizes" in {
val vectors = Seq(Array(0.1, 0.2), Array(1.0)).map(Vectors.dense(_).toOPVector)
intercept[IllegalArgumentException](assertAggr(SumVector, vectors, Vectors.zeros(0))).getMessage shouldBe
"requirement failed: Vectors must have same length: x.length == y.length (1 != 2)"
}

Spec[CustomMonoidAggregator[_]] should "work" in {
val customAgg = new CustomMonoidAggregator[Real](zero = None, associativeFn = (r1, r2) => (r1 -> r2).map(_ + _))
assertAggr(customAgg, realTestSeq, Option(doubleBase.flatten.sum))
Expand Down
Loading

0 comments on commit ab521f8

Please sign in to comment.