Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
src/sage/tensor/modules/tensor_free_module.py: Update doctest output
Browse files Browse the repository at this point in the history
  • Loading branch information
Matthias Koeppe committed Aug 27, 2022
1 parent 993b343 commit 5b8ccde
Showing 1 changed file with 7 additions and 2 deletions.
9 changes: 7 additions & 2 deletions src/sage/tensor/modules/tensor_free_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -736,7 +736,9 @@ def basis(self, symbol, latex_symbol=None, from_family=None,
sage: M = FiniteRankFreeModule(ZZ, 3, name='M')
sage: T = M.tensor_module(1,1)
sage: e_T = T.basis('e'); e_T
<sage.tensor.modules.tensor_free_submodule_basis.TensorFreeSubmoduleBasis_comp... object at ...>
Standard basis on the
Free module of type-(1,1) tensors on the Rank-3 free module M over the Integer Ring
induced by Basis (e_0,e_1,e_2) on the Rank-3 free module M over the Integer Ring
sage: for a in e_T: a.display()
e_0⊗e^0
e_0⊗e^1
Expand All @@ -751,7 +753,10 @@ def basis(self, symbol, latex_symbol=None, from_family=None,
sage: from sage.tensor.modules.tensor_free_submodule import TensorFreeSubmodule_comp
sage: Sym2M = TensorFreeSubmodule_comp(M, (2, 0), sym=range(2))
sage: e_Sym2M = Sym2M.basis('e'); e_Sym2M
<sage.tensor.modules.tensor_free_submodule_basis.TensorFreeSubmoduleBasis_comp... object at ...>
Standard basis on the
Free module of type-(2,0) tensors with Fully symmetric 2-indices components w.r.t. (0, 1, 2)
on the Rank-3 free module M over the Integer Ring
induced by Basis (e_0,e_1,e_2) on the Rank-3 free module M over the Integer Ring
sage: for a in e_Sym2M: a.display()
e_0⊗e_0
e_0⊗e_1 + e_1⊗e_0
Expand Down

0 comments on commit 5b8ccde

Please sign in to comment.