Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
allow algorithm for Polyhedron_base.face_generator
Browse files Browse the repository at this point in the history
  • Loading branch information
Jonathan Kliem committed Apr 5, 2022
1 parent 78bfb6c commit 01f30c5
Showing 1 changed file with 41 additions and 9 deletions.
50 changes: 41 additions & 9 deletions src/sage/geometry/polyhedron/base3.py
Original file line number Diff line number Diff line change
Expand Up @@ -371,7 +371,7 @@ def _test_combinatorial_polyhedron(self, tester=None, **options):
prefix=tester._prefix+" ")
tester.info(tester._prefix+" ", newline = False)

def face_generator(self, face_dimension=None, dual=None):
def face_generator(self, face_dimension=None, dual=None, algorithm=None):
r"""
Return an iterator over the faces of given dimension.
Expand All @@ -382,9 +382,13 @@ def face_generator(self, face_dimension=None, dual=None):
- ``face_dimension`` -- integer (default ``None``),
yield only faces of this dimension if specified
- ``dual`` -- boolean (default ``None``);
if ``True``, generate the faces using the vertices;
if ``False``, generate the faces using the facets;
if ``None``, pick automatically
if ``True``, pick dual algorithm
if ``False``, pick primal algorithm
- ``algorithm`` -- string (optional);
specify whether to start with facets or vertices:
* ``'primal'`` -- start with the facets
* ``'dual'`` -- start with the vertices
* ``None`` -- choose automatically
OUTPUT:
Expand Down Expand Up @@ -474,7 +478,7 @@ def face_generator(self, face_dimension=None, dual=None):
In non-dual mode we can skip subfaces of the current (proper) face::
sage: P = polytopes.cube()
sage: it = P.face_generator(dual=False)
sage: it = P.face_generator(algorithm='primal')
sage: _ = next(it), next(it)
sage: face = next(it)
sage: face.ambient_H_indices()
Expand All @@ -500,7 +504,7 @@ def face_generator(self, face_dimension=None, dual=None):
In dual mode we can skip supfaces of the current (proper) face::
sage: P = polytopes.cube()
sage: it = P.face_generator(dual=True)
sage: it = P.face_generator(algorithm='dual')
sage: _ = next(it), next(it)
sage: face = next(it)
sage: face.ambient_V_indices()
Expand Down Expand Up @@ -528,7 +532,7 @@ def face_generator(self, face_dimension=None, dual=None):
In non-dual mode, we cannot skip supfaces::
sage: it = P.face_generator(dual=False)
sage: it = P.face_generator(algorithm='primal')
sage: _ = next(it), next(it)
sage: next(it)
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 4 vertices
Expand All @@ -539,7 +543,7 @@ def face_generator(self, face_dimension=None, dual=None):
In dual mode, we cannot skip subfaces::
sage: it = P.face_generator(dual=True)
sage: it = P.face_generator(algorithm='dual')
sage: _ = next(it), next(it)
sage: next(it)
A 0-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 1 vertex
Expand All @@ -550,7 +554,7 @@ def face_generator(self, face_dimension=None, dual=None):
We can only skip sub-/supfaces of proper faces::
sage: it = P.face_generator(dual=False)
sage: it = P.face_generator(algorithm='primal')
sage: next(it)
A 3-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 8 vertices
sage: it.ignore_subfaces()
Expand Down Expand Up @@ -585,7 +589,35 @@ def face_generator(self, face_dimension=None, dual=None):
sage: [f] = P.face_generator(2)
sage: f.ambient_Hrepresentation()
(An equation (1, 1, 1) x - 6 == 0,)
Check that ``dual`` keyword still works::
sage: P = polytopes.hypercube(4)
sage: list(P.face_generator(2, dual=False))[:4]
[A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 4 vertices,
A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 4 vertices,
A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 4 vertices,
A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 4 vertices]
sage: list(P.face_generator(2, dual=True))[:4]
[A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 4 vertices,
A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 4 vertices,
A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 4 vertices,
A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 4 vertices]
Check that we catch incorrect algorithms:
sage: list(P.face_generator(2, algorithm='integrate'))[:4]
Traceback (most recent call last):
...
ValueError: algorithm must be 'primal', 'dual' or None
"""
if algorithm == 'primal':
dual = False
elif algorithm == 'dual':
dual = True
elif algorithm is not None:
raise ValueError("algorithm must be 'primal', 'dual' or None")

from sage.geometry.polyhedron.combinatorial_polyhedron.face_iterator import FaceIterator_geom
return FaceIterator_geom(self, output_dimension=face_dimension, dual=dual)

Expand Down

0 comments on commit 01f30c5

Please sign in to comment.