Skip to content

Commit

Permalink
Update tests for singular 4.2.1p2
Browse files Browse the repository at this point in the history
  • Loading branch information
antonio-rojas committed Nov 20, 2021
1 parent 2673632 commit 720d10e
Show file tree
Hide file tree
Showing 6 changed files with 10 additions and 12 deletions.
4 changes: 2 additions & 2 deletions src/sage/modular/modform_hecketriangle/abstract_space.py
Original file line number Diff line number Diff line change
Expand Up @@ -1161,8 +1161,8 @@ def F_basis_pol(self, m, order_1=ZZ(0)):
sage: MF.F_basis_pol(2)
x^13*y*d^2 - 2*x^8*y^3*d^2 + x^3*y^5*d^2
sage: MF.F_basis_pol(1)
(-81*x^13*y*d + 62*x^8*y^3*d + 19*x^3*y^5*d)/(-100)
sage: MF.F_basis_pol(1) * 100
81*x^13*y*d - 62*x^8*y^3*d - 19*x^3*y^5*d
sage: MF.F_basis_pol(0)
(141913*x^13*y + 168974*x^8*y^3 + 9113*x^3*y^5)/320000
Expand Down
4 changes: 2 additions & 2 deletions src/sage/modular/modform_hecketriangle/readme.py
Original file line number Diff line number Diff line change
Expand Up @@ -757,8 +757,8 @@
General Eisenstein series in some arithmetic cases::
sage: ModularFormsRing(n=4).EisensteinSeries(k=8)
(-25*f_rho^4 - 9*f_i^2)/(-34)
sage: ModularFormsRing(n=4).EisensteinSeries(k=8) * 34
25*f_rho^4 + 9*f_i^2
sage: ModularForms(n=3, k=12).EisensteinSeries()
1 + 65520/691*q + 134250480/691*q^2 + 11606736960/691*q^3 + 274945048560/691*q^4 + O(q^5)
sage: ModularForms(n=6, k=12).EisensteinSeries()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1578,7 +1578,7 @@ def asymptotics(self, p, alpha, N, asy_var=None, numerical=0,
(1, [(x*y + x + y - 1, 2)])
sage: alpha = [4, 3]
sage: decomp = F.asymptotic_decomposition(alpha); decomp
(0, []) + (-2*r*(1/x + 1) - 1/2/x - 1/2, [(x*y + x + y - 1, 1)])
(0, []) + (... - 1/2, [(x*y + x + y - 1, 1)])
sage: F1 = decomp[1]
sage: p = {y: 1/3, x: 1/2}
sage: asy = F1.asymptotics(p, alpha, 2, verbose=True)
Expand Down
7 changes: 2 additions & 5 deletions src/sage/rings/polynomial/hilbert.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -576,13 +576,10 @@ def hilbert_poincare_series(I, grading=None):
sage: hilbert_poincare_series(J).denominator().factor()
(t - 1)^14
This example exceeds the current capabilities of Singular::
This example exceeded the capabilities of Singular before version 4.2.1p2
sage: J.hilbert_numerator(algorithm='singular')
Traceback (most recent call last):
...
RuntimeError: error in Singular function call 'hilb':
int overflow in hilb 1
120*t^33 - 3465*t^32 + 48180*t^31 - 429374*t^30 + 2753520*t^29 - 13522410*t^28 + 52832780*t^27 - 168384150*t^26 + 445188744*t^25 - 987193350*t^24 + 1847488500*t^23 + 1372406746*t^22 - 403422496*t^21 - 8403314*t^20 - 471656596*t^19 + 1806623746*t^18 + 752776200*t^17 + 752776200*t^16 - 1580830020*t^15 + 1673936550*t^14 - 1294246800*t^13 + 786893250*t^12 - 382391100*t^11 + 146679390*t^10 - 42299400*t^9 + 7837830*t^8 - 172260*t^7 - 468930*t^6 + 183744*t^5 - 39270*t^4 + 5060*t^3 - 330*t^2 + 1
"""
cdef Polynomial_integer_dense_flint HP
Expand Down
2 changes: 1 addition & 1 deletion src/sage/rings/polynomial/multi_polynomial_ideal.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,7 @@
which is not 1. ::
sage: I.groebner_basis()
[x + y + 57119*z + 4, y^2 + 3*y + 17220, y*z + y + 26532, 2*y + 158864, z^2 + 17223, 2*z + 41856, 164878]
[x + y + 57119*z + 4, y^2 + 3*y + 17220, y*z + ..., 2*y + 158864, z^2 + 17223, 2*z + 41856, 164878]
Now for each prime `p` dividing this integer 164878, the Groebner
basis of I modulo `p` will be non-trivial and will thus give a
Expand Down
3 changes: 2 additions & 1 deletion src/sage/rings/polynomial/multi_polynomial_libsingular.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -4920,7 +4920,8 @@ cdef class MPolynomial_libsingular(MPolynomial):
sage: Pol.<x,y,z> = ZZ[]
sage: p = -x*y + x*z + 54*x - 2
sage: (5*p^2).lcm(3*p) == 15*p^2
sage: q = (5*p^2).lcm(3*p)
sage: q * q.lc().sign() == 15*p^2
True
sage: lcm(2*x, 2*y)
2*x*y
Expand Down

0 comments on commit 720d10e

Please sign in to comment.