Skip to content

Commit

Permalink
Apply suggestions from code review
Browse files Browse the repository at this point in the history
Co-authored-by: Fredrik Bakke <[email protected]>
  • Loading branch information
TashiWalde and fredrik-bakke authored Oct 13, 2023
1 parent 777e482 commit e6bb318
Show file tree
Hide file tree
Showing 3 changed files with 14 additions and 17 deletions.
4 changes: 2 additions & 2 deletions src/hott/03-equivalences.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -421,8 +421,8 @@ retraction the first map is an equivalence, and dually.
( ( ( retr-gf, η-gf), (sec-gf, ε-gf)) : is-equiv A C (comp A B C g f))
: is-equiv B C g
:=
( ( comp C A B f retr-gf ,
ind-has-section A B f has-section-f
( ( comp C A B f retr-gf
, ind-has-section A B f has-section-f
( \ b → f (retr-gf (g b)) = b)
( \ a → ap A B (retr-gf (g (f a))) a f (η-gf a)))
, ( comp C A B f sec-gf, ε-gf))
Expand Down
24 changes: 11 additions & 13 deletions src/simplicial-hott/03-extension-types.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -70,8 +70,8 @@ restriction map `(ψ → A) → (ϕ → A)`, which we can view as the types of
: has-section (extension-type σ) (homotopy-extension-type σ)
(extension-type-weakening-map σ)
:=
( extension-strictification σ,
\ th → ( second (section-extension-type-weakening' σ th)))
( extension-strictification σ
, \ th → ( second (section-extension-type-weakening' σ th)))
#def is-equiv-extension-type-weakening
Expand Down Expand Up @@ -120,9 +120,7 @@ This equivalence is functorial in the following sense:
, \ _ → refl
)
, ( is-equiv-extension-type-weakening I ψ ϕ A' σ'
, is-equiv-extension-type-weakening I ψ ϕ A (\ t → α t (σ' t))
)
)
, is-equiv-extension-type-weakening I ψ ϕ A (\ t → α t (σ' t))))
```

## Commutation of arguments and currying
Expand Down Expand Up @@ -1095,7 +1093,7 @@ pointwise.
( \ τ → (t : ϕ) → (τ t = σ t))
( \ τ →
equiv-ExtExt extext I (\ t → ϕ t) (\ _ → BOT) (\ t → A t)
( \ _ → recBOT) ( \ t → τ t) ( σ))
( \ _ → recBOT) (\ t → τ t) σ)
#def extension-type-pointwise-weakening uses (extext)
( σ : (t : ϕ) → A t)
Expand Down Expand Up @@ -1132,7 +1130,7 @@ Given a map `α : A' → A`, there is also a notion of relative extension types.
: U
:=
Σ ( τ' : (t : ψ) → A' t [ϕ t ↦ σ' t])
, ( t : ψ) → (α t (τ' t) = τ t) [ϕ t ↦ refl]
, ( ( t : ψ) → (α t (τ' t) = τ t) [ϕ t ↦ refl])
#def relative-extension-type'
: U
Expand Down Expand Up @@ -1182,24 +1180,24 @@ with a `τ : ψ → A` that does not strictly restrict to `\ t → α (σ' t)`.
, ( t : ψ) → (α t (τ' t) = τ t) [ϕ t ↦ h t]
```

If all ordinary relative extension types are contractible, then also all
generalized ones.
If all ordinary relative extension types are contractible, then all
generalized extension types are also contractible.

```rzk
#def has-contr-relative-extension-types
: U
:=
( σ' : (t : ϕ) → A' t)
( ( σ' : (t : ϕ) → A' t)
→ ( τ : (t : ψ) → A t [ϕ t ↦ α t (σ' t)])
→ ( is-contr (relative-extension-type I ψ ϕ A' A α σ' τ))
→ ( is-contr (relative-extension-type I ψ ϕ A' A α σ' τ)))
#def has-contr-general-relative-extension-types
: U
:=
( σ' : (t : ϕ) → A' t)
( ( σ' : (t : ϕ) → A' t)
→ ( τ : (t : ψ) → A t)
→ ( h : (t : ϕ) → α t (σ' t) = τ t)
→ ( is-contr ( general-relative-extension-type σ' τ h))
→ ( is-contr ( general-relative-extension-type σ' τ h)))
#def has-contr-relative-extension-types-generalize' uses (extext)
( has-contr-relext-α : has-contr-relative-extension-types)
Expand Down
3 changes: 1 addition & 2 deletions src/simplicial-hott/04-right-orthogonal.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -90,8 +90,7 @@ extension types.
( \ _ → A') (\ _ → A) (\ _ → α) σ' τ)
( equiv-relative-extension-type-fib extext I ψ ϕ
( \ _ → A') (\ _ → A) (\ _ → α) σ' τ)
( are-contr-relext-α σ' τ)
)
( are-contr-relext-α σ' τ))
#def has-contr-relative-extension-types-is-right-orthogonal-to-shape uses (extext)
( is-orth-α : is-right-orthogonal-to-shape I ψ ϕ A' A α)
Expand Down

0 comments on commit e6bb318

Please sign in to comment.