Skip to content
/ mmTDA Public

Code for paper "A topological data analysis based classification method for multiple measurements"

License

Notifications You must be signed in to change notification settings

ryaram1/mmTDA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

mmTDA

Code for paper "A topological data analysis based classification method for multiple measurements.

This code will run a multiple measurements topological data analysis based classifier, and return the relevant cross-validated prediction accuracy. Please see the accompanying paper for full details of the methodology.

This code uses the filter function PCA, ie. the first principle component of the point cloud. The metric used is Euclidean.

Requirements

  • Python 3.X
  • numpy
  • pandas
  • scipy
  • sklearn
  • fastcluster

An easy installation of the environment can be accomplished by first installing the Anaconda python distribution. Then, pip can be used to install fastcluster.

Data should be prepared in a .csv file, of an nxm matrix of data points. Each column should have a feature label. There must also exist a column 'id' to denote the individual sample that each observation belongs to, and well as a column 'label' for the class label. Classes may be either binary or multi-class (integers).

The default sample file (pp6.csv) gives an example of a 6 class problem, where each class represents a different point process. From each class, 400 individual samplings of each of the point processes are grouped together with a common id. Please see the paper for further details.

Options

  • -f filename: the filename of the .csv (without .csv). The default is 'pp6' to use the sample file.
  • -g graphs: the number of graphs to build. The default is 10.
  • -r runs: the number of runs for each graph. The default is 10.
  • -c continuous: whether the data should be sampled randomly (0) or continuously (1). The default is 0 for random sampling.

About

Code for paper "A topological data analysis based classification method for multiple measurements"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages