Skip to content

Commit

Permalink
remove unused nprojbins var
Browse files Browse the repository at this point in the history
  • Loading branch information
kushaangupta committed Nov 18, 2024
1 parent 1a9e6c2 commit 9b98960
Showing 1 changed file with 0 additions and 35 deletions.
35 changes: 0 additions & 35 deletions neuro_py/ensemble/geodyn.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,12 +139,6 @@ def potential_landscape_nd(X_dyn, projbins, domainbins=None, nanborderempty=True
latentedges_nrns = []
domainedges_nrns = []
for nnrn in range(nnrns):
if isinstance(projbins, int):
nprojbins = projbins
elif isinstance(projbins[nnrn], int):
nprojbins = projbins[nnrn]
else:
nprojbins = len(projbins[nnrn]) - 1 # bin edges
# 1D state space binning of time derivatives across domain
# assumes landscape may morph across domain
H, bin_edges, _ = binned_statistic_dd( # (nnrns times projbins) x time
Expand All @@ -171,35 +165,6 @@ def potential_landscape_nd(X_dyn, projbins, domainbins=None, nanborderempty=True
if nanborderempty:
nonzero_mask = H != 0

# # shape: projbins x 2 x nbins_domain
# idx_terminal_nonzero = np.asarray(list(zip(*find_terminal_masked_indices(
# nonzero_mask, axis=nnrn)))) # unzip the list

# # along axis 0 set all values from start to idx_first_nonzero to nan
# if nnrns == 1:
# for t in range(H.shape[1]):
# potential_pos_t[:idx_terminal_nonzero[t][0], t] = np.nan
# potential_pos_t[idx_terminal_nonzero[t][1] + 1:, t] = np.nan
# else:
# for pb in range(nprojbins):
# nrndimslices = [pb] * nnrns
# nrndimslices.append(0)
# for t in range(nbins_domain):
# idx_first_nonzero = idx_terminal_nonzero[pb][0][t]
# idx_last_nonzero = idx_terminal_nonzero[pb][1][t]

# nrndimslices[-1] = t
# nrndimslices[nnrn] = slice(0, idx_first_nonzero)

# potential_pos_t[tuple(nrndimslices)] = np.nan
# nrndimslices[nnrn] = slice(idx_last_nonzero + 1, None)
# # print(nrndimslices, potential_pos_t.shape)
# potential_pos_t[tuple(nrndimslices)] = np.nan

# # if idx_first_nonzero and idx_last_nonzero take up whole axis, then set all values to nan
# if idx_first_nonzero == 0 and idx_last_nonzero == nprojbins - 1:
# nrndimslices[nnrn] = slice(None)
# potential_pos_t[tuple(nrndimslices)] = np.nan
for t in range(nbins_domain):
nrndimslices = [slice(None)] * nnrns
nrndimslices.append(t)
Expand Down

0 comments on commit 9b98960

Please sign in to comment.