-
-
Notifications
You must be signed in to change notification settings - Fork 254
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add feature naming and improve documentation (#78)
* Add feature name field to dataset * dataset::Iter should use `Array1` internally * run fmt * fix some compilation errors * Add correlation analysis * Add initial p-value correlation * Add PCC p-value estimation * add feature names to diabetes dataset * add p-value estimation with shuffling * Run rustfmt * Add documentation to PCC * Use `writeln` for new line * Add test to correlation and feature names for datasets * Use fixed seeds for testing
- Loading branch information
Showing
9 changed files
with
481 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,323 @@ | ||
//! Correlation analysis for dataset features | ||
//! | ||
//! # Implementations | ||
//! | ||
//! * Pearsons's Correlation Coefficients - linear feature correlation | ||
use std::fmt; | ||
|
||
use ndarray::{Array1, ArrayBase, ArrayView2, Axis, Data, Ix2}; | ||
use rand::{rngs::SmallRng, seq::SliceRandom, SeedableRng}; | ||
|
||
use crate::dataset::{DatasetBase, Targets}; | ||
use crate::Float; | ||
|
||
/// Calculate the Pearson's Correlation Coefficient (or bivariate correlation) | ||
/// | ||
/// The PCC describes the linear correlation between two variables. It is the covariance divided by | ||
/// the product of the standard deviations, therefore essentially a normalised measurement of the | ||
/// covariance and in range (-1, 1). A negative coefficient indicates a negative correlation | ||
/// between both variables. | ||
fn pearson_correlation<F: Float, D: Data<Elem = F>>(data: &ArrayBase<D, Ix2>) -> Array1<F> { | ||
// number of obserations and features | ||
let nobservations = data.nrows(); | ||
let nfeatures = data.ncols(); | ||
|
||
// center distribution by subtracting mean | ||
let mean = data.mean_axis(Axis(0)).unwrap(); | ||
let denoised = data - &mean.insert_axis(Axis(1)).t(); | ||
|
||
// calculate the covariance matrix | ||
let covariance = denoised.t().dot(&denoised) / F::from(nobservations - 1).unwrap(); | ||
// calculate the standard deviation vector | ||
let std_deviation = denoised.var_axis(Axis(0), F::one()).mapv(|x| x.sqrt()); | ||
|
||
// we will only save the upper triangular matrix as the diagonal is one and | ||
// the lower triangular is a mirror of the upper triangular part | ||
let mut pearson_coeffs = Array1::zeros(nfeatures * (nfeatures - 1) / 2); | ||
|
||
let mut k = 0; | ||
for i in 0..(nfeatures - 1) { | ||
for j in (i + 1)..nfeatures { | ||
// calculate pearson correlation coefficients by normalizing the covariance matrix | ||
pearson_coeffs[k] = covariance[(i, j)] / std_deviation[i] / std_deviation[j]; | ||
|
||
k += 1; | ||
} | ||
} | ||
|
||
pearson_coeffs | ||
} | ||
|
||
/// Evidence of non-correlation with re-sampling test | ||
/// | ||
/// The p-value supports or reject the null hypthesis that two variables are not correlated. A | ||
/// small p-value indicates a strong evidence that two variables are correlated. | ||
fn p_values<F: Float, D: Data<Elem = F>>( | ||
data: &ArrayBase<D, Ix2>, | ||
ground: &Array1<F>, | ||
num_iter: usize, | ||
) -> Array1<F> { | ||
// transpose element matrix such that we can shuffle columns | ||
let (n, m) = (data.ncols(), data.nrows()); | ||
let mut flattened = Vec::with_capacity(n * m); | ||
for i in 0..m { | ||
for j in 0..n { | ||
flattened.push(data[(i, j)]); | ||
} | ||
} | ||
|
||
let mut p_values = Array1::zeros(n * (n - 1) / 2); | ||
let mut rng = SmallRng::from_entropy(); | ||
|
||
// calculate p-values by shuffling features `num_iter` times | ||
for _ in 0..num_iter { | ||
// shuffle all corresponding features | ||
for j in 0..n { | ||
flattened[j * m..(j + 1) * m].shuffle(&mut rng); | ||
} | ||
|
||
// create an ndarray and calculate the PCC for this distribution | ||
let arr_view = ArrayView2::from_shape((m, n), &flattened).unwrap(); | ||
let correlation = pearson_correlation(&arr_view.t()); | ||
|
||
// count the number of times that the re-shuffled distribution has a larger PCC than the | ||
// original distribution | ||
let greater = ground | ||
.iter() | ||
.zip(correlation.iter()) | ||
.map(|(a, b)| { | ||
if a.abs() < b.abs() { | ||
F::one() | ||
} else { | ||
F::zero() | ||
} | ||
}) | ||
.collect::<Array1<_>>(); | ||
|
||
p_values += &greater; | ||
} | ||
|
||
// divide by the number of iterations to re-scale range | ||
p_values / F::from(num_iter).unwrap() | ||
} | ||
|
||
/// Pearson Correlation Coefficients (or Bivariate Coefficients) | ||
/// | ||
/// The PCCs indicate the linear correlation between variables. This type also supports printing | ||
/// the PCC as an upper triangle matrix together with the feature names. | ||
pub struct PearsonCorrelation<F> { | ||
pearson_coeffs: Array1<F>, | ||
p_values: Array1<F>, | ||
feature_names: Vec<String>, | ||
} | ||
|
||
impl<F: Float> PearsonCorrelation<F> { | ||
/// Calculate the Pearson Correlation Coefficients and optionally p-values from dataset | ||
/// | ||
/// The PCC describes the linear correlation between two variables. It is the covariance divided by | ||
/// the product of the standard deviations, therefore essentially a normalised measurement of the | ||
/// covariance and in range (-1, 1). A negative coefficient indicates a negative correlation | ||
/// between both variables. | ||
/// | ||
/// The p-value supports or reject the null hypthesis that two variables are not correlated. A | ||
/// small p-value indicates a strong evidence that two variables are correlated. | ||
/// | ||
/// # Parameters | ||
/// | ||
/// * `dataset`: Data for the correlation analysis | ||
/// * `num_iter`: optionally number of iterations of the p-value test, if none then no p-value | ||
/// are calculate | ||
/// | ||
/// # Example | ||
/// | ||
/// ``` | ||
/// let corr = linfa_datasets::diabetes() | ||
/// .pearson_correlation_with_p_value(100); | ||
/// | ||
/// println!("{}", corr); | ||
/// ``` | ||
/// | ||
/// The output looks like this (the p-value is in brackets behind the PCC): | ||
/// | ||
/// ```ignore | ||
/// age +0.17 (0.61) +0.18 (0.62) +0.33 (0.34) +0.26 (0.47) +0.22 (0.54) -0.07 (0.83) +0.20 (0.60) +0.27 (0.54) +0.30 (0.41) | ||
/// sex +0.09 (0.74) +0.24 (0.59) +0.04 (0.91) +0.14 (0.74) -0.38 (0.28) +0.33 (0.30) +0.15 (0.74) +0.21 (0.58) | ||
/// body mass index +0.39 (0.20) +0.25 (0.45) +0.26 (0.51) -0.37 (0.31) +0.41 (0.24) +0.45 (0.21) +0.39 (0.21) | ||
/// blood pressure +0.24 (0.54) +0.19 (0.56) -0.18 (0.61) +0.26 (0.45) +0.39 (0.20) +0.39 (0.16) | ||
/// t-cells +0.90 (0.00) +0.05 (0.89) +0.54 (0.05) +0.52 (0.10) +0.33 (0.37) | ||
/// low-density lipoproteins -0.20 (0.53) +0.66 (0.04) +0.32 (0.42) +0.29 (0.42) | ||
/// high-density lipoproteins -0.74 (0.02) -0.40 (0.21) -0.27 (0.42) | ||
/// thyroid stimulating hormone +0.62 (0.04) +0.42 (0.21) | ||
/// lamotrigine +0.47 (0.14) | ||
/// blood sugar level | ||
/// ``` | ||
|
||
pub fn from_dataset<D: Data<Elem = F>, T: Targets>( | ||
dataset: &DatasetBase<ArrayBase<D, Ix2>, T>, | ||
num_iter: Option<usize>, | ||
) -> Self { | ||
// calculate pearson coefficients | ||
let pearson_coeffs = pearson_correlation(&dataset.records()); | ||
|
||
// calculate p values | ||
let p_values = match num_iter { | ||
Some(num_iter) => p_values(&dataset.records(), &pearson_coeffs, num_iter), | ||
None => Array1::zeros(0), | ||
}; | ||
|
||
PearsonCorrelation { | ||
pearson_coeffs, | ||
p_values, | ||
feature_names: dataset.feature_names(), | ||
} | ||
} | ||
|
||
/// Return the Pearson's Correlation Coefficients | ||
/// | ||
/// The coefficients are describing the linear correlation, normalized in range (-1, 1) between | ||
/// two variables. Because the correlation is commutative and PCC to the same variable is | ||
/// always perfectly correlated (i.e. 1), this function only returns the upper triangular | ||
/// matrix with (n-1)*n/2 elements. | ||
pub fn get_coeffs(&self) -> &Array1<F> { | ||
&self.pearson_coeffs | ||
} | ||
|
||
/// Return the p values supporting the null-hypothesis | ||
/// | ||
/// This implementation estimates the p value with the permutation test. As null-hypothesis | ||
/// the non-correlation between two variables is chosen such that the smaller the p-value the | ||
/// stronger we can reject the null-hypothesis and conclude that they are linearily correlated. | ||
pub fn get_p_values(&self) -> Option<&Array1<F>> { | ||
if self.p_values.is_empty() { | ||
None | ||
} else { | ||
Some(&self.p_values) | ||
} | ||
} | ||
} | ||
|
||
impl<F: Float, D: Data<Elem = F>, T: Targets> DatasetBase<ArrayBase<D, Ix2>, T> { | ||
/// Calculate the Pearson Correlation Coefficients from a dataset | ||
/// | ||
/// The PCC describes the linear correlation between two variables. It is the covariance divided by | ||
/// the product of the standard deviations, therefore essentially a normalised measurement of the | ||
/// covariance and in range (-1, 1). A negative coefficient indicates a negative correlation | ||
/// between both variables. | ||
/// | ||
/// # Example | ||
/// | ||
/// ``` | ||
/// let corr = linfa_datasets::diabetes() | ||
/// .pearson_correlation(); | ||
/// | ||
/// println!("{}", corr); | ||
/// ``` | ||
/// | ||
pub fn pearson_correlation(&self) -> PearsonCorrelation<F> { | ||
PearsonCorrelation::from_dataset(self, None) | ||
} | ||
|
||
/// Calculate the Pearson Correlation Coefficients and p-values from the dataset | ||
/// | ||
/// The PCC describes the linear correlation between two variables. It is the covariance divided by | ||
/// the product of the standard deviations, therefore essentially a normalised measurement of the | ||
/// covariance and in range (-1, 1). A negative coefficient indicates a negative correlation | ||
/// between both variables. | ||
/// | ||
/// The p-value supports or reject the null hypthesis that two variables are not correlated. | ||
/// The smaller the p-value the stronger is the evidence that two variables are correlated. A | ||
/// typical threshold is p < 0.05. | ||
/// | ||
/// # Parameters | ||
/// | ||
/// * `num_iter`: number of iterations of the permutation test to estimate the p-value | ||
/// | ||
/// # Example | ||
/// | ||
/// ``` | ||
/// let corr = linfa_datasets::diabetes() | ||
/// .pearson_correlation_with_p_value(100); | ||
/// | ||
/// println!("{}", corr); | ||
/// ``` | ||
/// | ||
pub fn pearson_correlation_with_p_value(&self, num_iter: usize) -> PearsonCorrelation<F> { | ||
PearsonCorrelation::from_dataset(self, Some(num_iter)) | ||
} | ||
} | ||
|
||
/// Display the Pearson's Correlation Coefficients as upper triangular matrix | ||
/// | ||
/// This function prints the feature names for each row, the corresponding PCCs and optionally the | ||
/// p-values in brackets after the PCCs. | ||
impl<F: Float> fmt::Display for PearsonCorrelation<F> { | ||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | ||
let n = self.feature_names.len(); | ||
let longest = self.feature_names.iter().map(|x| x.len()).max().unwrap(); | ||
|
||
let mut k = 0; | ||
for i in 0..(n - 1) { | ||
write!(f, "{}", self.feature_names[i])?; | ||
for _ in 0..longest - self.feature_names[i].len() { | ||
write!(f, " ")?; | ||
} | ||
|
||
for _ in 0..i { | ||
write!(f, " ")?; | ||
} | ||
|
||
for _ in (i + 1)..n { | ||
if !self.p_values.is_empty() { | ||
write!( | ||
f, | ||
"{:+.2} ({:.2}) ", | ||
self.pearson_coeffs[k], self.p_values[k] | ||
)?; | ||
} else { | ||
write!(f, "{:.2} ", self.pearson_coeffs[k])?; | ||
} | ||
|
||
k += 1; | ||
} | ||
writeln!(f,)?; | ||
} | ||
writeln!(f, "{}", self.feature_names[n - 1])?; | ||
|
||
Ok(()) | ||
} | ||
} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use crate::DatasetBase; | ||
use ndarray::{stack, Array, Axis}; | ||
use ndarray_rand::{rand_distr::Uniform, RandomExt}; | ||
use rand::{rngs::SmallRng, SeedableRng}; | ||
|
||
#[test] | ||
fn uniform_random() { | ||
// create random number generator and random matrix with uniform distribution | ||
let mut rng = SmallRng::seed_from_u64(42); | ||
let data = Array::random_using((1000, 4), Uniform::new(-1., 1.), &mut rng); | ||
|
||
// calculate PCCs and test that they are indeed near zero | ||
let pcc = DatasetBase::from(data).pearson_correlation(); | ||
assert!(pcc.get_coeffs().mapv(|x: f32| x.abs()).sum() < 5e-2 * 6.0); | ||
} | ||
|
||
#[test] | ||
fn perfectly_correlated() { | ||
let mut rng = SmallRng::seed_from_u64(42); | ||
let v = Array::random_using((4, 1), Uniform::new(0., 1.), &mut rng); | ||
|
||
// project feature with matrix | ||
let data = Array::random_using((1000, 1), Uniform::new(-1., 1.), &mut rng); | ||
let data_proj = data.dot(&v.t()); | ||
|
||
let corr = DatasetBase::from(stack![Axis(1), data, data_proj]) | ||
.pearson_correlation_with_p_value(100); | ||
|
||
assert!(corr.get_coeffs().mapv(|x| 1. - x).sum() < 1e-2); | ||
assert!(corr.get_p_values().unwrap().sum() < 1e-2); | ||
} | ||
} |
Oops, something went wrong.