Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Put Pin::as_deref_mut in impl Pin<Ptr> / rearrange Pin methods #129449

Merged
merged 2 commits into from
Aug 25, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
143 changes: 73 additions & 70 deletions library/core/src/pin.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1291,8 +1291,8 @@ impl<Ptr: Deref> Pin<Ptr> {
/// // Now, if `x` was the only reference, we have a mutable reference to
/// // data that we pinned above, which we could use to move it as we have
/// // seen in the previous example. We have violated the pinning API contract.
/// }
/// ```
/// }
/// ```
///
/// ## Pinning of closure captures
///
Expand Down Expand Up @@ -1370,33 +1370,6 @@ impl<Ptr: Deref> Pin<Ptr> {
unsafe { Pin::new_unchecked(&*self.__pointer) }
}

/// Unwraps this `Pin<Ptr>`, returning the underlying `Ptr`.
///
/// # Safety
///
/// This function is unsafe. You must guarantee that you will continue to
/// treat the pointer `Ptr` as pinned after you call this function, so that
/// the invariants on the `Pin` type can be upheld. If the code using the
/// resulting `Ptr` does not continue to maintain the pinning invariants that
/// is a violation of the API contract and may lead to undefined behavior in
/// later (safe) operations.
///
/// Note that you must be able to guarantee that the data pointed to by `Ptr`
/// will be treated as pinned all the way until its `drop` handler is complete!
///
/// *For more information, see the [`pin` module docs][self]*
///
/// If the underlying data is [`Unpin`], [`Pin::into_inner`] should be used
/// instead.
#[inline(always)]
#[rustc_const_unstable(feature = "const_pin", issue = "76654")]
#[stable(feature = "pin_into_inner", since = "1.39.0")]
pub const unsafe fn into_inner_unchecked(pin: Pin<Ptr>) -> Ptr {
pin.__pointer
}
}

impl<Ptr: DerefMut> Pin<Ptr> {
/// Gets a mutable reference to the pinned value this `Pin<Ptr>` points to.
///
/// This is a generic method to go from `&mut Pin<Pointer<T>>` to `Pin<&mut T>`.
Expand Down Expand Up @@ -1428,11 +1401,55 @@ impl<Ptr: DerefMut> Pin<Ptr> {
/// ```
#[stable(feature = "pin", since = "1.33.0")]
#[inline(always)]
pub fn as_mut(&mut self) -> Pin<&mut Ptr::Target> {
pub fn as_mut(&mut self) -> Pin<&mut Ptr::Target>
where
Ptr: DerefMut,
{
// SAFETY: see documentation on this function
unsafe { Pin::new_unchecked(&mut *self.__pointer) }
}

/// Gets `Pin<&mut T>` to the underlying pinned value from this nested `Pin`-pointer.
///
/// This is a generic method to go from `Pin<&mut Pin<Pointer<T>>>` to `Pin<&mut T>`. It is
/// safe because the existence of a `Pin<Pointer<T>>` ensures that the pointee, `T`, cannot
/// move in the future, and this method does not enable the pointee to move. "Malicious"
/// implementations of `Ptr::DerefMut` are likewise ruled out by the contract of
/// `Pin::new_unchecked`.
#[unstable(feature = "pin_deref_mut", issue = "86918")]
#[must_use = "`self` will be dropped if the result is not used"]
#[inline(always)]
pub fn as_deref_mut(self: Pin<&mut Pin<Ptr>>) -> Pin<&mut Ptr::Target>
where
Ptr: DerefMut,
{
// SAFETY: What we're asserting here is that going from
//
// Pin<&mut Pin<Ptr>>
//
// to
//
// Pin<&mut Ptr::Target>
//
// is safe.
//
// We need to ensure that two things hold for that to be the case:
//
// 1) Once we give out a `Pin<&mut Ptr::Target>`, a `&mut Ptr::Target` will not be given out.
// 2) By giving out a `Pin<&mut Ptr::Target>`, we do not risk violating
// `Pin<&mut Pin<Ptr>>`
//
// The existence of `Pin<Ptr>` is sufficient to guarantee #1: since we already have a
// `Pin<Ptr>`, it must already uphold the pinning guarantees, which must mean that
// `Pin<&mut Ptr::Target>` does as well, since `Pin::as_mut` is safe. We do not have to rely
// on the fact that `Ptr` is _also_ pinned.
//
// For #2, we need to ensure that code given a `Pin<&mut Ptr::Target>` cannot cause the
// `Pin<Ptr>` to move? That is not possible, since `Pin<&mut Ptr::Target>` no longer retains
// any access to the `Ptr` itself, much less the `Pin<Ptr>`.
unsafe { self.get_unchecked_mut() }.as_mut()
}

/// Assigns a new value to the memory location pointed to by the `Pin<Ptr>`.
///
/// This overwrites pinned data, but that is okay: the original pinned value's destructor gets
Expand All @@ -1457,10 +1474,36 @@ impl<Ptr: DerefMut> Pin<Ptr> {
#[inline(always)]
pub fn set(&mut self, value: Ptr::Target)
where
Ptr: DerefMut,
Ptr::Target: Sized,
{
*(self.__pointer) = value;
}

/// Unwraps this `Pin<Ptr>`, returning the underlying `Ptr`.
///
/// # Safety
///
/// This function is unsafe. You must guarantee that you will continue to
/// treat the pointer `Ptr` as pinned after you call this function, so that
/// the invariants on the `Pin` type can be upheld. If the code using the
/// resulting `Ptr` does not continue to maintain the pinning invariants that
/// is a violation of the API contract and may lead to undefined behavior in
/// later (safe) operations.
///
/// Note that you must be able to guarantee that the data pointed to by `Ptr`
/// will be treated as pinned all the way until its `drop` handler is complete!
///
/// *For more information, see the [`pin` module docs][self]*
///
/// If the underlying data is [`Unpin`], [`Pin::into_inner`] should be used
/// instead.
#[inline(always)]
#[rustc_const_unstable(feature = "const_pin", issue = "76654")]
#[stable(feature = "pin_into_inner", since = "1.39.0")]
pub const unsafe fn into_inner_unchecked(pin: Pin<Ptr>) -> Ptr {
pin.__pointer
}
}

impl<'a, T: ?Sized> Pin<&'a T> {
Expand Down Expand Up @@ -1613,46 +1656,6 @@ impl<T: ?Sized> Pin<&'static T> {
}
}

impl<'a, Ptr: DerefMut> Pin<&'a mut Pin<Ptr>> {
/// Gets `Pin<&mut T>` to the underlying pinned value from this nested `Pin`-pointer.
///
/// This is a generic method to go from `Pin<&mut Pin<Pointer<T>>>` to `Pin<&mut T>`. It is
/// safe because the existence of a `Pin<Pointer<T>>` ensures that the pointee, `T`, cannot
/// move in the future, and this method does not enable the pointee to move. "Malicious"
/// implementations of `Ptr::DerefMut` are likewise ruled out by the contract of
/// `Pin::new_unchecked`.
#[unstable(feature = "pin_deref_mut", issue = "86918")]
#[must_use = "`self` will be dropped if the result is not used"]
#[inline(always)]
pub fn as_deref_mut(self) -> Pin<&'a mut Ptr::Target> {
// SAFETY: What we're asserting here is that going from
//
// Pin<&mut Pin<Ptr>>
//
// to
//
// Pin<&mut Ptr::Target>
//
// is safe.
//
// We need to ensure that two things hold for that to be the case:
//
// 1) Once we give out a `Pin<&mut Ptr::Target>`, a `&mut Ptr::Target` will not be given out.
// 2) By giving out a `Pin<&mut Ptr::Target>`, we do not risk violating
// `Pin<&mut Pin<Ptr>>`
//
// The existence of `Pin<Ptr>` is sufficient to guarantee #1: since we already have a
// `Pin<Ptr>`, it must already uphold the pinning guarantees, which must mean that
// `Pin<&mut Ptr::Target>` does as well, since `Pin::as_mut` is safe. We do not have to rely
// on the fact that `Ptr` is _also_ pinned.
//
// For #2, we need to ensure that code given a `Pin<&mut Ptr::Target>` cannot cause the
// `Pin<Ptr>` to move? That is not possible, since `Pin<&mut Ptr::Target>` no longer retains
// any access to the `Ptr` itself, much less the `Pin<Ptr>`.
unsafe { self.get_unchecked_mut() }.as_mut()
}
}

impl<T: ?Sized> Pin<&'static mut T> {
/// Gets a pinning mutable reference from a static mutable reference.
///
Expand Down
Loading