Skip to content

Commit

Permalink
Auto merge of #57882 - euclio:unused-doc-attributes, r=estebank
Browse files Browse the repository at this point in the history
overhaul unused doc comments lint

This PR contains a number of improvements to the `unused_doc_comments` lint.

- Extends the span to cover the entire comment when using sugared doc comments.
- Triggers the lint for all unused doc comments on a node, instead of just the first one.
- Triggers the lint on macro expansions, and provides a help note explaining that doc comments must be expanded by the macro.
- Adds a label pointing at the node that cannot be documented.

Furthermore, this PR fixes any instances in rustc where a macro expansion was erroneously documented.
  • Loading branch information
bors committed Mar 9, 2019
2 parents c9f8304 + daf80f7 commit e1b8898
Show file tree
Hide file tree
Showing 14 changed files with 342 additions and 163 deletions.
2 changes: 1 addition & 1 deletion src/libcore/num/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -4515,7 +4515,7 @@ macro_rules! rev {
)*}
}

/// intra-sign conversions
// intra-sign conversions
try_from_upper_bounded!(u16, u8);
try_from_upper_bounded!(u32, u16, u8);
try_from_upper_bounded!(u64, u32, u16, u8);
Expand Down
16 changes: 8 additions & 8 deletions src/librustc/hir/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -122,15 +122,15 @@ impl fmt::Display for HirId {
// hack to ensure that we don't try to access the private parts of `ItemLocalId` in this module
mod item_local_id_inner {
use rustc_data_structures::indexed_vec::Idx;
/// An `ItemLocalId` uniquely identifies something within a given "item-like",
/// that is within a hir::Item, hir::TraitItem, or hir::ImplItem. There is no
/// guarantee that the numerical value of a given `ItemLocalId` corresponds to
/// the node's position within the owning item in any way, but there is a
/// guarantee that the `LocalItemId`s within an owner occupy a dense range of
/// integers starting at zero, so a mapping that maps all or most nodes within
/// an "item-like" to something else can be implement by a `Vec` instead of a
/// tree or hash map.
newtype_index! {
/// An `ItemLocalId` uniquely identifies something within a given "item-like",
/// that is within a hir::Item, hir::TraitItem, or hir::ImplItem. There is no
/// guarantee that the numerical value of a given `ItemLocalId` corresponds to
/// the node's position within the owning item in any way, but there is a
/// guarantee that the `LocalItemId`s within an owner occupy a dense range of
/// integers starting at zero, so a mapping that maps all or most nodes within
/// an "item-like" to something else can be implement by a `Vec` instead of a
/// tree or hash map.
pub struct ItemLocalId { .. }
}
}
Expand Down
35 changes: 17 additions & 18 deletions src/librustc/middle/region.rs
Original file line number Diff line number Diff line change
Expand Up @@ -132,25 +132,24 @@ pub enum ScopeData {
Remainder(FirstStatementIndex)
}

/// Represents a subscope of `block` for a binding that is introduced
/// by `block.stmts[first_statement_index]`. Such subscopes represent
/// a suffix of the block. Note that each subscope does not include
/// the initializer expression, if any, for the statement indexed by
/// `first_statement_index`.
///
/// For example, given `{ let (a, b) = EXPR_1; let c = EXPR_2; ... }`:
///
/// * The subscope with `first_statement_index == 0` is scope of both
/// `a` and `b`; it does not include EXPR_1, but does include
/// everything after that first `let`. (If you want a scope that
/// includes EXPR_1 as well, then do not use `Scope::Remainder`,
/// but instead another `Scope` that encompasses the whole block,
/// e.g., `Scope::Node`.
///
/// * The subscope with `first_statement_index == 1` is scope of `c`,
/// and thus does not include EXPR_2, but covers the `...`.
newtype_index! {
/// Represents a subscope of `block` for a binding that is introduced
/// by `block.stmts[first_statement_index]`. Such subscopes represent
/// a suffix of the block. Note that each subscope does not include
/// the initializer expression, if any, for the statement indexed by
/// `first_statement_index`.
///
/// For example, given `{ let (a, b) = EXPR_1; let c = EXPR_2; ... }`:
///
/// * The subscope with `first_statement_index == 0` is scope of both
/// `a` and `b`; it does not include EXPR_1, but does include
/// everything after that first `let`. (If you want a scope that
/// includes EXPR_1 as well, then do not use `Scope::Remainder`,
/// but instead another `Scope` that encompasses the whole block,
/// e.g., `Scope::Node`.
///
/// * The subscope with `first_statement_index == 1` is scope of `c`,
/// and thus does not include EXPR_2, but covers the `...`.
pub struct FirstStatementIndex { .. }
}

Expand Down
15 changes: 9 additions & 6 deletions src/librustc/ty/context.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1892,9 +1892,11 @@ pub mod tls {
rayon_core::tlv::get()
}

/// A thread local variable which stores a pointer to the current ImplicitCtxt
#[cfg(not(parallel_compiler))]
thread_local!(static TLV: Cell<usize> = Cell::new(0));
thread_local! {
/// A thread local variable which stores a pointer to the current ImplicitCtxt.
static TLV: Cell<usize> = Cell::new(0);
}

/// Sets TLV to `value` during the call to `f`.
/// It is restored to its previous value after.
Expand Down Expand Up @@ -2011,10 +2013,11 @@ pub mod tls {
})
}

/// Stores a pointer to the GlobalCtxt if one is available.
/// This is used to access the GlobalCtxt in the deadlock handler
/// given to Rayon.
scoped_thread_local!(pub static GCX_PTR: Lock<usize>);
scoped_thread_local! {
/// Stores a pointer to the GlobalCtxt if one is available.
/// This is used to access the GlobalCtxt in the deadlock handler given to Rayon.
pub static GCX_PTR: Lock<usize>
}

/// Creates a TyCtxt and ImplicitCtxt based on the GCX_PTR thread local.
/// This is used in the deadlock handler.
Expand Down
70 changes: 35 additions & 35 deletions src/librustc/ty/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1512,42 +1512,42 @@ impl<'tcx> InstantiatedPredicates<'tcx> {
}
}

/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. Each child then adds a new
/// set of names that are visible, in addition to those of its parent.
/// We say that the child universe "extends" the parent universe with
/// new names.
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
/// let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in an extended universe U1
/// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
/// of `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a universe U2 that extends U1, because we can
/// name it inside the fn type but not outside.
///
/// Universes are used to do type- and trait-checking around these
/// "forall" binders (also called **universal quantification**). The
/// idea is that when, in the body of `bar`, we refer to `T` as a
/// type, we aren't referring to any type in particular, but rather a
/// kind of "fresh" type that is distinct from all other types we have
/// actually declared. This is called a **placeholder** type, and we
/// use universes to talk about this. In other words, a type name in
/// universe 0 always corresponds to some "ground" type that the user
/// declared, but a type name in a non-zero universe is a placeholder
/// type -- an idealized representative of "types in general" that we
/// use for checking generic functions.
newtype_index! {
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. Each child then adds a new
/// set of names that are visible, in addition to those of its parent.
/// We say that the child universe "extends" the parent universe with
/// new names.
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
/// let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in an extended universe U1
/// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
/// of `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a universe U2 that extends U1, because we can
/// name it inside the fn type but not outside.
///
/// Universes are used to do type- and trait-checking around these
/// "forall" binders (also called **universal quantification**). The
/// idea is that when, in the body of `bar`, we refer to `T` as a
/// type, we aren't referring to any type in particular, but rather a
/// kind of "fresh" type that is distinct from all other types we have
/// actually declared. This is called a **placeholder** type, and we
/// use universes to talk about this. In other words, a type name in
/// universe 0 always corresponds to some "ground" type that the user
/// declared, but a type name in a non-zero universe is a placeholder
/// type -- an idealized representative of "types in general" that we
/// use for checking generic functions.
pub struct UniverseIndex {
DEBUG_FORMAT = "U{}",
}
Expand Down
78 changes: 39 additions & 39 deletions src/librustc/ty/sty.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1082,46 +1082,46 @@ impl<'a, 'gcx, 'tcx> ParamConst {
}
}

/// A [De Bruijn index][dbi] is a standard means of representing
/// regions (and perhaps later types) in a higher-ranked setting. In
/// particular, imagine a type like this:
///
/// for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
/// ^ ^ | | |
/// | | | | |
/// | +------------+ 0 | |
/// | | |
/// +--------------------------------+ 1 |
/// | |
/// +------------------------------------------+ 0
///
/// In this type, there are two binders (the outer fn and the inner
/// fn). We need to be able to determine, for any given region, which
/// fn type it is bound by, the inner or the outer one. There are
/// various ways you can do this, but a De Bruijn index is one of the
/// more convenient and has some nice properties. The basic idea is to
/// count the number of binders, inside out. Some examples should help
/// clarify what I mean.
///
/// Let's start with the reference type `&'b isize` that is the first
/// argument to the inner function. This region `'b` is assigned a De
/// Bruijn index of 0, meaning "the innermost binder" (in this case, a
/// fn). The region `'a` that appears in the second argument type (`&'a
/// isize`) would then be assigned a De Bruijn index of 1, meaning "the
/// second-innermost binder". (These indices are written on the arrays
/// in the diagram).
///
/// What is interesting is that De Bruijn index attached to a particular
/// variable will vary depending on where it appears. For example,
/// the final type `&'a char` also refers to the region `'a` declared on
/// the outermost fn. But this time, this reference is not nested within
/// any other binders (i.e., it is not an argument to the inner fn, but
/// rather the outer one). Therefore, in this case, it is assigned a
/// De Bruijn index of 0, because the innermost binder in that location
/// is the outer fn.
///
/// [dbi]: http://en.wikipedia.org/wiki/De_Bruijn_index
newtype_index! {
/// A [De Bruijn index][dbi] is a standard means of representing
/// regions (and perhaps later types) in a higher-ranked setting. In
/// particular, imagine a type like this:
///
/// for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
/// ^ ^ | | |
/// | | | | |
/// | +------------+ 0 | |
/// | | |
/// +--------------------------------+ 1 |
/// | |
/// +------------------------------------------+ 0
///
/// In this type, there are two binders (the outer fn and the inner
/// fn). We need to be able to determine, for any given region, which
/// fn type it is bound by, the inner or the outer one. There are
/// various ways you can do this, but a De Bruijn index is one of the
/// more convenient and has some nice properties. The basic idea is to
/// count the number of binders, inside out. Some examples should help
/// clarify what I mean.
///
/// Let's start with the reference type `&'b isize` that is the first
/// argument to the inner function. This region `'b` is assigned a De
/// Bruijn index of 0, meaning "the innermost binder" (in this case, a
/// fn). The region `'a` that appears in the second argument type (`&'a
/// isize`) would then be assigned a De Bruijn index of 1, meaning "the
/// second-innermost binder". (These indices are written on the arrays
/// in the diagram).
///
/// What is interesting is that De Bruijn index attached to a particular
/// variable will vary depending on where it appears. For example,
/// the final type `&'a char` also refers to the region `'a` declared on
/// the outermost fn. But this time, this reference is not nested within
/// any other binders (i.e., it is not an argument to the inner fn, but
/// rather the outer one). Therefore, in this case, it is assigned a
/// De Bruijn index of 0, because the innermost binder in that location
/// is the outer fn.
///
/// [dbi]: http://en.wikipedia.org/wiki/De_Bruijn_index
pub struct DebruijnIndex {
DEBUG_FORMAT = "DebruijnIndex({})",
const INNERMOST = 0,
Expand Down
Loading

0 comments on commit e1b8898

Please sign in to comment.