Official PyTorch implementation of ResFormer: Scaling ViTs with Multi-Resolution Training, CVPR2023 | Paper
We introduce, ResFormer, a framework that is built upon the seminal idea of multi-resolution training for improved performance on a wide spectrum of, mostly unseen, testing resolutions. In particular, ResFormer operates on replicated images of different resolutions and enforces a scale consistency loss to engage interactive information across different scales. More importantly, to alternate among varying resolutions effectively, especially novel ones in testing, we propose a global-local positional embedding strategy that changes smoothly conditioned on input sizes.pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install timm==0.5.4
pip install tensorboard
The default script for training ResFormer-S-MR with training resolutions of 224, 160 and 128.
python -m torch.distributed.launch --nproc_per_node 8 main.py --data-path YOUR_DATA_PATH --model resformer_small_patch16 --output_dir YOUR_OUTPUT_PATH --batch-size 128 --pin-mem --input-size 224 160 128 --auto-resume --distillation-type 'smooth-l1' --distillation-target cls --sep-aug
The default script for training ResFormer-B-MR with training resolutions of 224, 160 and 128.
python -m torch.distributed.launch --nproc_per_node 8 main.py --data-path YOUR_DATA_PATH --model resformer_base_patch16 --output_dir YOUR_OUTPUT_PATH --batch-size 128 --pin-mem --input-size 224 160 128 --auto-resume --distillation-type 'smooth-l1' --distillation-target cls --sep-aug --epochs 200 --drop-path 0.2 --lr 8e-4 --warmup-epochs 20 --clip-grad 5.0 --epochs 200 --cooldown-epochs 0
name | Training Res | Top-1(96) | Top-1(128) | Top-1(160) | Top-1(224) | Top-1(384) | Top-1(512) | model |
---|---|---|---|---|---|---|---|---|
ResFormer-T-MR | 128, 160, 224 | 61.40 | 67.78 | 71.09 | 73.85 | 75.04 | 73.77 | |
ResFormer-S-MR | 128, 160, 224 | 73.59 | 78.24 | 80.39 | 82.16 | 82.72 | 82.00 | |
ResFormer-S-MR | 128, 224, 384 | 72.92 | 77.84 | 80.09 | 82.28 | 83.70 | 83.86 | |
ResFormer-B-MR | 128, 160, 224 | 75.86 | 79.74 | 81.52 | 82.72 | 83.29 | 82.63 |
- image classification
- object detection
- semantic segmentation
- action recognition
This project is released under the MIT license. Please see the LICENSE file for more information.
@inproceedings{tian2022resformer,
title={ResFormer: Scaling ViTs with Multi-Resolution Training},
author={Tian, Rui and Wu, Zuxuan and Dai, Qi and Hu, Han and Qiao, Yu and Jiang, Yu-Gang},
booktitle={CVPR},
year={2023}
}