forked from cxy1997/Robotiq-UR5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
environment.py
302 lines (264 loc) · 13.4 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from __future__ import division
from mujoco_py import load_model_from_path, MjSim
import random
import math
import time
import os
import numpy as np
from scipy.misc import imsave
import matplotlib as mpl
from scipy.misc.pilutil import imshow
import logging
import copy
import gym
import cv2
initial_pos = [0.1, -50 / 180 * math.pi, 61.03 / 180 * math.pi,
0, 0, 0, # robotic arm
0, 0, 0, 0,
0, 0, 0, 0, # two fingers
-0.62, 0.32, 0, math.cos(math.pi * 0.16), 0, 0, math.sin(math.pi * 0.16),
-0.72, 0.38, 0, math.cos(math.pi * 0.18), 0, 0, math.sin(math.pi * 0.18),
-0.835, 0.425, 0, math.cos(math.pi * 0.195), 0, 0, math.sin(math.pi * 0.195),
-0.935, 0.46, 0, math.cos(math.pi * 0.23), 0, 0, math.sin(math.pi * 0.23)] # 4 cubes
joint_pos = [[29.70 / 180 * math.pi, -85 / 180 * math.pi, 115 / 180 * math.pi], # yellow
[31.00 / 180 * math.pi, -78 / 180 * math.pi, 105 / 180 * math.pi],
[30.55 / 180 * math.pi, -70 / 180 * math.pi, 99 / 180 * math.pi],
[20 / 180 * math.pi, -45 / 180 * math.pi, 60 / 180 * math.pi]]
closed_pos = [1.12810781, -0.59798289, -0.53003607]
fig_size_1 = (214, 214) # For the workbench camera
fig_size_2 = (214, 214) # For the upper camera
gaussian_noise_parameters = (20, 20)
gaussian_blur_prarmeters = ((5, 5), 1.5)
safety_threshold = 0.01 # Used to determine the stablity of current joint positions
grasp_steps = 120 # The minimum steps in simulator for the gripper to close is 120
drop_steps = 60 # It takes roughly 12 steps to reach ground from a 0.3m high position, extra iterations are for the convergance of final postion
sensor_threshold = 2.0 # Used to judge whether a cube is firmly grasped
action_scale = 30
class vector():
# 3D vector class
def __init__(self, x=0, y=0, z=1):
self.x, self.y, self.z = x, y, z
def add(self, v):
return vector(self.x + v.x, self.y + v.y, self.z + v.z)
def dot(self, v):
return self.x * v.x + self.y * v.y + self.z * v.z
def mul_vec(self, v):
return vector(self.y*v.z-self.z*v.y, self.z*v.x-self.x*v.z, self.x*v.y-self.y*v.x)
def mul_num(self, s):
return vector(self.x * s, self.y * s, self.z * s)
class quaternion():
# Quaternion class used for 3D rotation
def __init__(self, w=0, v=vector(0,0,1)):
self.v = v
self.w = w
def rev(self):
N = math.sqrt(self.w*self.w + self.v.x*self.v.x + self.v.y*self.v.y + self.v.z*self.v.z)
return quaternion(self.w/N, vector(-self.v.x/N, -self.v.y/N, -self.v.z/N))
def mul(self, q):
res_v = self.v.mul_vec(q.v).add(q.v.mul_num(self.w)).add(self.v.mul_num(q.w))
res_w = self.w*q.w - self.v.dot(q.v)
return quaternion(res_w, res_v)
class lab_env():
def __init__(self, env, args):
#super(lab_env, self).__init__(env)
# The real-world simulator
self.model = load_model_from_path('xmls/lab_env.xml')
self.sim = MjSim(self.model)
# Used to locate the gripper
self.model2 = load_model_from_path('xmls/light_env.xml')
self.sim2 = MjSim(self.model2)
def reset(self, task_id):
self.task = task_id
self.grasping = -1
self.last_grasp = -1
# Configure gravity
for i in range(4):
self.sim.data.ctrl[i] = -1
# Configure joint positions
for i in range(42):
self.sim.data.qpos[i] = initial_pos[i]
for i in range(3):
self.sim.data.qpos[i] = joint_pos[task_id][i]
self.pos_forward()
self.sim.forward()
remapped_pos = [remap(self.sim.data.qpos[0], -30 / 180 * math.pi, 45 / 180 * math.pi, -1, 1),
remap(self.sim.data.qpos[1], -105 / 180 * math.pi, -50 / 180 * math.pi, -1, 1),
remap(self.sim.data.qpos[2], 0 / 180 * math.pi, 180 / 180 * math.pi, -1, 1), 0]
return (remapped_pos,) + self.get_state()
def step(self, action):
self.sim.data.qpos[0] = remap(action[0], -1, 1, -30 / 180 * math.pi, 45 / 180 * math.pi)
self.sim.data.qpos[1] = remap(action[1], -1, 1, -105 / 180 * math.pi, -50 / 180 * math.pi)
self.sim.data.qpos[2] = remap(action[2], -1, 1, 0 / 180 * math.pi, 180 / 180 * math.pi)
self.pos_forward()
self.sim.forward()
if action[3] < self.last_grasp or self.grasping == -1:
t = int(remap(action[3], -1, 1, 0, grasp_steps))
for i in range(6, 14):
self.sim.data.qpos[i] = 0
self.sim.forward()
self.grasping = -1
self.sim.data.ctrl[4] = 1
self.sim.data.ctrl[5] = 1
backup = [self.sim.data.qpos[i] for i in [15, 16, 22, 23, 29, 30, 36, 37]]
for i in range(t):
self.sim.step()
stop = False
for j in range(4):
if self.sim.data.sensordata[j] > sensor_threshold:
self.grasping = j
self.pickuppos = [self.sim.data.qpos[i] for i in (list(range(6)) + list(range(14 + 7 * self.grasping, 21 + 7 * self.grasping)))]
stop = True
break
for i in range(4):
for j in range(2):
self.sim.data.qpos[15 + 7 * i + j] = backup[i * 2 + j]
if stop:
break
self.gripper_sync()
self.sim.forward()
self.sim.data.ctrl[4] = 0
self.sim.data.ctrl[5] = 0
self.last_grasp = action[3]
return self.get_state()
# Ensure that the gripper is always heading down and is parallar to the desk edge
def pos_forward(self):
self.sim.data.qpos[3] = math.pi * 1.5 - self.sim.data.qpos[1] - self.sim.data.qpos[2]
self.sim.data.qpos[4] = math.pi * 1.5
self.sim.data.qpos[5] = math.pi * 1.25 + self.sim.data.qpos[0]
self.gripper_sync()
if self.grasping != -1:
current_xyz = pos_to_xyz(self.sim.data.qpos[0: 6])
old_xyz = pos_to_xyz(self.pickuppos[0: 6])
for i in range(3):
self.sim.data.qpos[14 + 7 * self.grasping + i] = self.pickuppos[6 + i] + current_xyz[i] - old_xyz[i]
'''
old_quat = quaternion(self.pickuppos[9], vector(self.pickuppos[10], self.pickuppos[11], self.pickuppos[12]))
rotate_quat = quaternion(math.cos(self.sim.data.qpos[0] - self.pickuppos[0]), vector(0, 0, math.sin(self.sim.data.qpos[0] - self.pickuppos[0])))
new_quat = rotate_quat.mul(old_quat)
self.sim.data.qpos[17 + 7 * self.grasping] = new_quat.w
self.sim.data.qpos[18 + 7 * self.grasping] = new_quat.v.x
self.sim.data.qpos[19 + 7 * self.grasping] = new_quat.v.y
self.sim.data.qpos[20 + 7 * self.grasping] = new_quat.v.z
'''
def gripper_sync(self):
self.sim.data.qpos[9] = gripper_consistent(self.sim.data.qpos[6: 9])
self.sim.data.qpos[13] = gripper_consistent(self.sim.data.qpos[10: 13])
def get_state(self):
sync(self.sim, self.sim2, 6)
# Locate the gripper, render twice to overcome bugs in mujoco
image_1 = copy.deepcopy(self.sim.render(width = 960, height = 720, camera_name = 'workbench_camera'))
image_1 = copy.deepcopy(self.sim.render(width = 960, height = 720, camera_name = 'workbench_camera'))
image_2 = copy.deepcopy(self.sim.render(width = 960, height = 720, camera_name = 'upper_camera'))
image_2 = copy.deepcopy(self.sim.render(width = 960, height = 720, camera_name = 'upper_camera'))
image_3 = copy.deepcopy(self.sim2.render(width = 960, height = 720, camera_name = 'workbench_camera'))
image_3 = copy.deepcopy(self.sim2.render(width = 960, height = 720, camera_name = 'workbench_camera'))
x1, y1 = get_x_y(image_3)
image_4 = copy.deepcopy(self.sim2.render(width = 960, height = 720, camera_name = 'upper_camera'))
image_4 = copy.deepcopy(self.sim2.render(width = 960, height = 720, camera_name = 'upper_camera'))
x2, y2 = get_x_y(image_4)
# Crop gripper images and add noise
image_1 = cv2.GaussianBlur(gaussian_noise(crop(image_1, x1 + fig_size_1[0] // 2, y1, *fig_size_1), *gaussian_noise_parameters), *gaussian_blur_prarmeters).transpose((2, 0, 1))
image_2 = cv2.GaussianBlur(gaussian_noise(crop(image_2, x2 + fig_size_2[0] // 2, y2, *fig_size_2), *gaussian_noise_parameters), *gaussian_blur_prarmeters).transpose((2, 0, 1))
danger = int(self.safety_check() or math.isnan(x1) or math.isnan(y1) or math.isnan(x2) or math.isnan(y2))
return [x1, y1, x2, y2, int(self.grasping == self.task), danger], (image_1, image_2)
def safety_check(self):
# return 0 if safe, otherwise 1
backup = [self.sim.data.qpos[i] for i in range(14)]
self.sim.step()
s = 0
for i in range(6):
s += abs(backup[i] - self.sim.data.qpos[i])
self.sim.data.qpos[i] = backup[i]
return s > safety_threshold
def force_close(self):
for i in range(2):
for j in range(3):
self.sim.data.qpos[6 + i * 4 + j] = closed_pos[j]
self.gripper_sync()
self.sim.forward()
def get_x_y(fig):
gray_fig = fig.sum(axis = 2)
x, y = np.where(gray_fig > 0)
x_mean = x.mean() if x.shape[0] > 0 else math.nan
y_mean = y.mean() if y.shape[0] > 0 else math.nan
return x_mean, y_mean
def pos_to_xyz(pos):
x = 0.425 * math.cos(pos[1]) + 0.39225 * math.cos(pos[1] + pos[2]) - 0.09465 * math.sin(pos[1] + pos[2] + pos[3])\
+ 0.0823 * math.cos(pos[1] + pos[2] + pos[3]) * math.sin(pos[4])
y = 0.10915 + 0.0823 * math.cos(pos[4])
c, s = math.cos(pos[0] + 0.75 * math.pi), math.sin(pos[0] + 0.75 * math.pi)
z = 0.089159 - 0.425 * math.sin(pos[1]) - 0.39225 * math.sin(pos[1] + pos[2]) - 0.09465 * math.cos(pos[1] + pos[2] + pos[3])\
- 0.0823 * math.sin(pos[1] + pos[2] + pos[3]) * math.sin(pos[4])
x, y = x * c - y * s, x * s + y * c
return x, y, z
def crop(fig, x, y, height, width):
Height, Width, _ = fig.shape
x = constrain(x, height // 2, Height - height // 2)
y = constrain(y, width // 2, Width - width // 2)
return fig[x - height // 2: x + height // 2, y - width // 2: y + width // 2, :]
def constrain(x, lower_bound, upper_bound):
x = (upper_bound + lower_bound) / 2 if math.isnan(x) else x
x = upper_bound if x > upper_bound else x
x = lower_bound if x < lower_bound else x
return int(round(x))
def gaussian_noise(fig, mu, sigma):
noise = mu + np.random.randn(*fig.shape) * sigma
target = fig + noise
target[target < 0] = 0
target[target > 255] = 255
return target
# Synchronize sim2 with sim1
def sync(sim1, sim2, length):
for i in range(length):
sim2.data.qpos[i] = sim1.data.qpos[i]
sim2.forward()
def gripper_consistent(angle):
x = -0.006496 + 0.0315 * math.sin(angle[0]) + 0.04787744772 * math.cos(angle[0] + angle[1] - 0.1256503306) - 0.02114828598 * math.sin(angle[0] + angle[1] + angle[2] - 0.1184899592)
y = -0.0186011 - 0.0315 * math.cos(angle[0]) + 0.04787744772 * math.sin(angle[0] + angle[1] - 0.1256503306) + 0.02114828598 * math.cos(angle[0] + angle[1] + angle[2] - 0.1184899592)
return math.atan2(y, x) + 0.6789024115
def create_env(env_id, args):
env = env_id #gym.make(env_id)
if env == 'Goal_LfD':
env = lab_env(env, args)
return env
def remap(x, lb, ub, LB, UB):
return (x - lb) / (ub - lb) * (UB - LB) + LB
if __name__ == '__main__':
env = create_env('Goal_LfD', None)
angles, state, images = env.reset(0)
print(state)
state, images = env.step([0.2, -0.2, 0.4, -1])
#imshow(images[0])
#imshow(images[1])
fig1 = env.sim.render(width = 960, height = 720, camera_name = 'workbench_camera')
fig1 = env.sim.render(width = 960, height = 720, camera_name = 'workbench_camera')
#imshow(fig1)
fig2 = env.sim.render(width = 960, height = 720, camera_name = 'upper_camera')
fig2 = env.sim.render(width = 960, height = 720, camera_name = 'upper_camera')
imshow(fig2)
state, images = env.step([0.2, -0.2, 0.4, 1])
print(state)
fig2 = env.sim.render(width = 960, height = 720, camera_name = 'upper_camera')
fig2 = env.sim.render(width = 960, height = 720, camera_name = 'upper_camera')
imshow(fig2)
state, images = env.step([0.2, 0, -0.2, 1])
print(state)
fig2 = env.sim.render(width = 960, height = 720, camera_name = 'upper_camera')
fig2 = env.sim.render(width = 960, height = 720, camera_name = 'upper_camera')
imshow(fig2)
state, images = env.step([0.2, 0, -0.2, 0.9])
print(state)
fig2 = env.sim.render(width = 960, height = 720, camera_name = 'upper_camera')
fig2 = env.sim.render(width = 960, height = 720, camera_name = 'upper_camera')
imshow(fig2)
'''
video = cv2.VideoWriter("sample.avi", cv2.VideoWriter_fourcc('M','J','P','G'), 10.0, (1920, 720), True)
for i in range(20):
env.step([0, 0, 0, 0])
fig1 = env.sim.render(width = 960, height = 720, camera_name = 'workbench_camera')
fig1 = env.sim.render(width = 960, height = 720, camera_name = 'workbench_camera')
fig2 = env.sim.render(width = 960, height = 720, camera_name = 'upper_camera')
fig2 = env.sim.render(width = 960, height = 720, camera_name = 'upper_camera')
video.write(cv2.cvtColor(np.concatenate((fig1, fig2), axis=1), cv2.COLOR_BGR2RGB))
video.release()
'''