A minimalist file-based JSON documents database with the capability of complex SELECT WHERE operations and multiple aggregations over a single table.
- Tables are subdirectories, e.g.
/tmp/client/
; - Registries are files, e.g.
/tmp/client/a929782.json
that map to golang structs. - Filenames are registry IDs, e.g.
/tmp/client/a929782.json
hasID==a929782
; - SQL queries can include WHERE clauses (e.g.
SelectWhere()
), aggregations (SelectAggreg()
, to perform SUM(), COUNT(), AVG(), advanced filters or far any complex result) or both (SelectWhereAggreg()
). - No backend server is required.
- Since the database is just a set of files organized in directories, it is easy to backup (tar, zip...), replicate (rsync...), versionate (git...), etc... Hell, registers can be modified with vim or browsed using cat and grep! If you are a power user, you know jq.
- JSON makes data compatible with any other JSON-capable system. Migration, export and import from other systems becomes trivial. Not even SQLite allows that.
go get github.com/rodolfoap/jdocdb
package main
import("fmt"; db "github.com/rodolfoap/jdocdb";)
type Client struct {
Name string
Age int
Active bool
}
func main() {
// Insert
c:=Client{"Hello, World!", 44, true}
db.Insert("a929782", c, "/tmp")
// Select
result1:=db.Select("a929782", Client{}, "/tmp")
fmt.Printf("%#v\n", result1) // main.Client{Name:"Hello, World!", Age:44, Active:true}
}
Notice that the Insert()
command creates a simple JSON file:
$ cat /tmp/client/a929782.json
{
"Id": "a929782",
"Data": {
"Name": "Hello, World!",
"Age": 44,
"Active": true
}
}
package main
import("fmt"; db "github.com/rodolfoap/jdocdb";)
// First, define the structure of your tables
type Person struct {
Name string
Age int
Sex bool
}
type Animal struct {
Name string
Legs int
Beak bool
}
// Now, you can start SQLing...
func main() {
db.Insert("p0926", Person{"James", 33, false})
/* Will create the file ./people/p0926.json with this content:
{
"Id": "p0926",
"Data": {
"Name": "James",
"Age": 33,
"Sex": false
}
} */
db.Insert("dinosaur", Animal{"Barney", 2, false})
// Will create ./animal/dinosaur.json
...
All commands have the form...
CommandX(PARAMETER_1, PARAMETER_2, ..., PARAMETER_N [, PREFIX [, SUFFIX ] ])
... where all PARAMETER_x are command-specific, and PREFIX/SUFFIX determine where will the table will be stored.
For example: db.SelectIds(Person{}, "prefix", "suffix")
. The rules are:
- If NO PREFIX is specified, the path will be
./person/
- If PREFIX=/var/data, the path will be
/var/data/person/
. Normally, you will just use a PREFIX, so, your typical command would bedb.SelectIds(Person{}, "/somewhere")
. - If SUFFIX=people is defined in addition, the path will be
/var/data/people/
For example, db.Insert("jill001", Person{"Jill", 11, false}, "/var/data", "people")
will produce /var/data/people/jill001.json
.
// This creates /tmp/person/z0215.json (default suffix is the table name)
// This is the recommended way to perform queries: just the database location (prefix).
db.Insert("z0215", Person{"Junge", 19, true}, "/tmp")
// This creates /tmp/z0215.json (no suffix)
db.Insert("z0215", Person{"Junge", 19, true}, "/tmp", "")
// When prefix and suffix are present: prefix/suffix/ID.json
// Naturally, suffix can be absolute (/var/data/...) or relative (./table)
// This will create ./prefix/suffix/z0215.json
db.Insert("z0215", Person{"Junge", 11, true}, "prefix", "suffix")
// When only prefix is present: prefix/TABLENAME/ID.json
// Notice such is a different table with the same type
// This will create ./prefix/person/z0215.json
db.Insert("z0215", Person{"Junge", 19, true}, "prefix")
// When none is present: ./TABLENAME/ID.json
// This will create ./person/q9823.json
db.Insert("q9823", Person{"Jonas", 44, true})
// More data in the ./person/ table:
db.Insert("n9878", Person{"Junge", 55, true})
db.Insert("r8791", Person{"Jonna", 55, false})
/* Excluding what was created in /tmp, here we have:
.
├── animal
│ └── dinosaur.json
├── prefix
│ ├── person
│ │ └── z0215.json
│ └── suffix
│ └── z0215.json
└── person
├── p0926.json
├── q9823.json
├── r8791.json
└── n9878.json
*/
SQL SELECT has multiple forms in JDocDB: Select()
allows selecting by ID and producing a set of struct.
Syntax: Select(KEY, EMPTY_STRUCT [, PREFIX [, SUFFIX] ])
Returns: T
: A single struct of the same type T provided as input.
Example:
jonas := db.Select("q9823", Person{})
// {Jonas 44 true}, jdocdb.Person, 44
fmt.Printf("%v, %T, %v\n", jonas, jonas, jonas.Age)
jojo := db.Select("a7654", Person{})
// Empty SELECT: file does not exist, and a log/debug message is produced
fmt.Printf("This is just empty: %v\n", jojo)
Syntax: SelectIds(EMPTY_STRUCT [, PREFIX [, SUFFIX] ])
Returns: []string
: A slice with a set of IDs.
Example:
/* Usage: db.SelectIds(EMPTY_STRUCT, [ PREFIX [, SUFFIX] ]) */
listIds := db.SelectIds(Person{})
// [n9878 p0926 q9823 r8791]
fmt.Println(listIds)
Syntax: SelectAll(EMPTY_STRUCT [, PREFIX [, SUFFIX] ])
Returns: map[string]T
: A map of key/values, key being the ID, and value a struct of the same type T provided as input.
Example:
/* Usage: db.SelectAll(EMPTY_STRUCT, [ PREFIX [, SUFFIX] ]) */
m := db.SelectAll(Person{})
// map[n9878:{Junge 55 true} p0926:{James 33 false} q9823:{Jonas 44 true} r8791:{Jonna 33 false}]
fmt.Println(m)
SELECT * FROM [TABLE] WHERE [CONDITIONS...];
are possible using Golang func types that are passed as arguments.
Syntax: SelectWhere(EMPTY_STRUCT, func(T Table) bool [, PREFIX [, SUFFIX] ])
, where:
func(T Table) bool
is a passing function performing the actual WHERE assessment to every row.
Returns: map[string]T
: A map of key/values, key being the ID, and value a struct of the same type T provided as input.
Example:
//
// SELECT * FROM Person WHERE AGE == 55
//
filtered := db.SelectWhere(Person{}, func(p Person) bool { return p.Age == 55 })
// map[n9878:{Junge 55 true} r8791:{Jonna 55 false}]
fmt.Println("Having 55:", filtered)
//
// SELECT * FROM Person WHERE NOT Sex
//
filtered = db.SelectWhere(Person{}, func(p Person) bool { return !p.Sex })
// map[p0926:{James 33 false} r8791:{Jonna 55 false}]
fmt.Println("Have not Sex:", filtered)
//
// SELECT * FROM Person WHERE Sex AND AGE == 55
//
filtered = db.SelectWhere(Person{}, func(p Person) bool { return p.Sex && p.Age == 55 })
// map[n9878:{Junge 55 true}]
fmt.Println("Have Sex and 55:", filtered)
// Testing queries with a new table...
db.Insert("chicken", Animal{"Clotilde", 2, true})
db.Insert("dog", Animal{"Wallander, Mortimer", 4, false})
db.Insert("cat", Animal{"Watson", 3, false})
db.Insert("ant", Animal{"Woody", 5, true})
/* Result:
.
└── animal
├── ant.json
├── cat.json
├── chicken.json
├── dinosaur.json
└── dog.json
*/
// An alternative way of Golang for defining functions:
hasLongNameOrBeak := func(a Animal) bool { return len(a.Name) > 6 || a.Beak }
//
// SELECT * FROM Animal WHERE LEN(name)>6 OR Beak
//
animals := db.SelectWhere(Animal{}, hasLongNameOrBeak)
// map[ant:{Woody 5 true} chicken:{Clotilde 2 true} dog:{Wallander, Mortimer 4 false}]
fmt.Println("Has Long Name Or Beak:", animals)
Syntax: SelectIdWhere(EMPTY_STRUCT, func(T Table)bool [, PREFIX [, SUFFIX] ])
, see SelectWhere()
Returns: []string
: A slice with a set of IDs.
Example:
//
// SELECT ID FROM Animal WHERE LEN(name)>6 OR Beak
//
animalIDs := db.SelectIdWhere(Animal{}, hasLongNameOrBeak)
// [chicken dog ant]
fmt.Println("IDs for Has Long Name Or Beak:", animalIDs)
SQL aggregation functions like SUM(), AVG() or COUNT() are possible in JDocDB in the same way that WHERE functions are possible: by passing anonymous or common functions as arguments.
Syntax: SelectAggreg(EMPTY_STRUCT, &AGGREGATOR, func(key string, value string) [, PREFIX [, SUFFIX] ])
, where:
&AGGREGATOR
is a pointer to a variable that is available during the aggregation loop, andfunc(key string, value string)
is a passing function performing the actual aggregation.
Returns:
map[string]T
: A map of key/values, key being the ID, and value a struct of the same type T provided as input.- In addition, the
&AGGREGATOR
provides the actual aggregation values.
Example:
//
// SELECT ... COUNT(*) AS x0, SUM(Legs) AS x1 FROM Animal;
//
x = []int{0, 0}
animals = db.SelectAggreg(Animal{}, &x, func(id string, a Animal) { x[0] += 1; x[1] += a.Legs })
// map[ant:{Woody 5 true} cat:{Watson 3 false} chicken:{Clotilde 2 true} dinosaur:{Barney 2 false} dog:{Wallander, Mortimer 4 false}]
// map[ant:{...} chicken:{...} dog:{...}], COUNT: 3; SUM(Legs): 11.
fmt.Printf("%v, COUNT: %v; SUM(Legs): %v.\n", animals, x[0], x[1])
Syntax: SelectWhereAggreg(EMPTY_STRUCT, func(T Table) bool, &AGGREGATOR, func(key string, value string) [, PREFIX [, SUFFIX] ])
, where:
func(T Table) bool
is a passing function performing the actual WHERE assessment to every row;&AGGREGATOR
is a pointer to a variable that is available during the aggregation loop, andfunc(key string, value string)
is a passing function performing the actual aggregation.
Returns:
map[string]T
: A map of key/values, key being the ID, and value a struct of the same type T provided as input;- In addition, the
&AGGREGATOR
provides the actual aggregation values.
Example:
// A single aggregation
//
// SELECT ... SUM(*) AS sum FROM Animal WHERE LEN(name)>6 OR Beak;
//
sum := 0
animals = db.SelectWhereAggreg(Animal{}, hasLongNameOrBeak, &sum, func(id string, a Animal) { sum += a.Legs })
// map[ant:{Woody 5 true} chicken:{Clotilde 2 true} dog:{Wallander, Mortimer 4 false}],
// sum == 11
fmt.Printf("%v, have a total of %v Legs.\n", animals, sum)
// Multiple aggregations
//
// SELECT ... COUNT(*) AS x0, SUM(Legs) AS x1 FROM Animal WHERE LEN(name)>6 OR Beak;
//
x := []int{0, 0}
animals = db.SelectWhereAggreg(Animal{}, hasLongNameOrBeak, &x, func(id string, a Animal) { x[0] += 1; x[1] += a.Legs })
// map[ant:{Woody 5 true} chicken:{Clotilde 2 true} dog:{Wallander, Mortimer 4 false}]
// map[ant:{...} chicken:{...} dog:{...}], COUNT: 3; SUM(Legs): 11.
fmt.Printf("%v, COUNT: %v; SUM(Legs): %v.\n", animals, x[0], x[1])
Syntax: Count(EMPTY_STRUCT [, PREFIX [, SUFFIX] ])
Returns: An int
with the counting result.
Example:
//
// SELECT ... COUNT(*) FROM Animal;
//
quantity = db.Count(Animal{})
// map[ant:{Woody 5 true} cat:{Watson 3 false} chicken:{Clotilde 2 true} dinosaur:{Barney 2 false} dog:{Wallander, Mortimer 4 false}]
// quantity == 5
fmt.Printf("Bare COUNT: %v.\n", quantity)
Syntax: CountAggreg(EMPTY_STRUCT, &AGGREGATOR, func(key string, value string) [, PREFIX [, SUFFIX] ])
, where:
&AGGREGATOR
is a pointer to a variable that is available during the aggregation loop, andfunc(key string, value string)
is a passing function performing the actual aggregation.
Returns:
- An
int
with the counting result; - In addition, the
&AGGREGATOR
provides the actual aggregation values.
CountAggreg()
is the simplest way of performing aggregations. If the result set is not important, just aggregations, go for CountAggreg()
.
Example:
// Simpler, without the WHERE clause:
//
// SELECT ... COUNT(*) AS legs FROM Animal;
//
legs = 0
quantity = db.CountAggreg(Animal{}, &legs, func(id string, a Animal) { legs += a.Legs })
// map[ant:{Woody 5 true} cat:{Watson 3 false} chicken:{Clotilde 2 true} dinosaur:{Barney 2 false} dog:{Wallander, Mortimer 4 false}]
// quantity == 5 and legs == 16
fmt.Printf("Even simpler, COUNT: %v; SUM(Legs): %v.\n", quantity, legs)
Syntax: CountWhereAggreg(EMPTY_STRUCT, func(T Table) bool, &AGGREGATOR, func(key string, value string) [, PREFIX [, SUFFIX] ])
, where:
func(T Table) bool
is a passing function performing the actual WHERE assessment to every row;&AGGREGATOR
is a pointer to a variable that is available during the aggregation loop, andfunc(key string, value string)
is a passing function performing the actual aggregation.
Returns:
- An
int
with the counting result; - In addition, the
&AGGREGATOR
provides the actual aggregation values.
Example:
//
// SELECT ... COUNT(*) AS legs FROM Animal WHERE LEN(name)>6 OR Beak;
//
legs := 0
quantity := db.CountWhereAggreg(Animal{}, hasLongNameOrBeak, &legs, func(id string, a Animal) { legs += a.Legs })
// map[ant:{Woody 5 true} chicken:{Clotilde 2 true} dog:{Wallander, Mortimer 4 false}]
// quantity == 3 and legs == 11
fmt.Printf("Simpler, COUNT: %v; SUM(Legs): %v.\n", quantity, legs)
Syntax: CountWhere(EMPTY_STRUCT, func(T Table) bool [, PREFIX [, SUFFIX] ])
, where:
func(T Table) bool
is a passing function performing the actual WHERE assessment to every row.
Returns: An int
with the counting result.
Example:
// Just db.Count() without aggregation, using a WHERE clause:
//
// SELECT ... COUNT(*) AS legs FROM Animal WHERE LEN(name)>6 OR Beak;
//
quantity = db.CountWhere(Animal{}, hasLongNameOrBeak)
// map[ant:{Woody 5 true} chicken:{Clotilde 2 true} dog:{Wallander, Mortimer 4 false}]
// quantity == 5 and legs == 16
fmt.Printf("COUNT WHERE: %v.\n", quantity)
Syntax: Sum(EMPTY_STRUCT, "FIELD_NAME" [, PREFIX [, SUFFIX] ])
, where "FIELD_NAME" is a sum-able field which will be obtained by reflection.
Returns: The type T (corresponding to the field) sum result.
Example:
// Addition: SQL SUM is db.Sum()
//
// SELECT SUM(Legs) FROM Animal;
//
quantLegs := db.Sum(Animal{}, "Legs")
fmt.Printf("SUM: %v.\n", quantLegs)
Syntax: SumWhere(EMPTY_STRUCT, "FIELD_NAME", func(T Table) bool [, PREFIX [, SUFFIX] ])
, where:
- "FIELD_NAME" is a sum-able field which will be obtained by reflection;
func(T Table) bool
is a passing function performing the actual WHERE assessment to every row.
Returns: An int
with the counting result.
Example:
// SUM WHERE
//
// SELECT SUM(Legs) FROM Animal WHERE LEN(name)>6 OR Beak;
//
quantLegs = db.SumWhere(Animal{}, "Legs", hasLongNameOrBeak)
fmt.Printf("SUM WHERE: %v.\n", quantLegs)
Syntax: Delete(ID, EMPTY_STRUCT [, PREFIX [, SUFFIX] ])
Example:
// db.Delete function
//
// DELETE FROM Person WHERE ID="p0926";
//
db.Delete("p0926", Person{})
db.Delete("n9878", Person{})
db.Delete("q9823", Person{})
db.Delete("r8791", Person{})
remaining := db.SelectAll(Person{})
fmt.Println("Remaining after delete:", remaining)
JDocDB has far stronger query potentials in addition to SELECT by ID. SQL SELECT
equivalents are:
SELECT * FROM mytype;
: SelectAll(MyType{}, tableLocation), producing a map[id]struct (a map of MyType structs, where the index is the register ID)SELECT ID FROM mytype;
:SelectIds(MyType{}, tableLocation)
, producing a slice of string IDs.SELECT * FROM mytype WHERE ID=id;
:Select(id, MyType{}, tableLocation)
, producing a single struct, the ID is necessarily unique.SELECT * FROM mytype WHERE conditions...;
:SelectWhere(MyType{}, conditionsFunction, tableLocation)
, producing a map[id]struct (a map of MyType structs, where the index is the table ID), according to a function, which can be a closure, a nested or a common function.SELECT some_aggregate_function(...) FROM mytype;"
:SelectAggreg(MyType, &aggregationVariable, aggregationFunction, tableLocation)
, producing a map[id]struct (a map of MyType structs, where the index is the table ID), according to a function, which can be a closure, a nested or a common function.SELECT some_aggregate_function(...) FROM mytype WHERE conditions ...;"
:SelectWhereAggreg(MyType, function, &aggregationVariable, aggregationFunction, tableLocation)
, producing a map[id]struct (a map of MyType structs, where the index is the table ID), according to a function, which can be a closure, a nested or a common function.SELECT ID FROM mytype WHERE conditions...;
:SelectIdWhere(MyType{}, conditionsFunction, tableLocation)
, producing a slice of string IDs, according to a function, which can be a closure, a nested or a common function.SELECT SUM(myfield) FROM mytype;
:Sum(MyType{}, "myfield", tableLocation)
, producing a slice of string IDs, using a string to locate the field to sum (evidently, a single sum). This function can be easily implemented withSelectAggreg()
orSelectWhereAggreg()
and it is provided just for simplicity.SELECT SUM(myfield) FROM mytype WHERE conditions...;
:SumWhere(MyType{}, conditionsFunction, tableLocation)
, producing a slice of string IDs, according to a function, which can be a closure, a nested or a common function. Notice there's noSumWhereAggreg()
function, since SUM is already an aggregation.SELECT COUNT(*) FROM mytype;
:db.Count(MyType{}, tableLocation)
, yielding an int. Provided for simplicity.SELECT COUNT(*) FROM mytype WHERE conditions...;
:db.CountWhere(MyType{}, conditionsFunction, tableLocation)
, yielding an int, seeSelectWhere()
.SELECT COUNT(*), some_aggregate_function(...) FROM mytype;
:db.CountAggreg(MyType{}, &aggregationVariable, aggregationFunction, tableLocation)
, yielding an int, seeSelectAggreg()
. If only aggregation results are required, usedb.CountAggreg()
instead ofSelectAggreg()
.SELECT COUNT(*), some_aggregate_function(...) FROM mytype WHERE conditions...;
:db.CountWhereAggreg(MyType{}, conditionsFunction, tableLocation)
, yielding an int, seeSelectWhereAggreg()
.DELETE FROM mytype WHERE ID=id;
:db.Delete(MyType{}, tableLocation)
, simple deletion. There is no table delete, just remove the directory where the registers are.INSERT INTO mytype VALUES ...;
:db.Insert(MyType{}, tableLocation)
, simple upsert function.