You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
SqueezeNet was originally described in a paper entitled "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size." AlexNet is a deep neural network that has 240MB of parameters, and SqueezeNet has just 5MB of parameters.
Model compression (e.g. quantization and pruning of model parameters) can be applied to a deep neural network after it has been trained. In the SqueezeNet paper, the authors demonstrated that a model compression technique called Deep Compression can be applied to SqueezeNet to further reduce the size of the parameter file from 5MB to 500KB.
There is an older attempt to bring DNN artifact detection started at https://github.com/robotika/subt-artf/tree/master/model. This issue is meant to track information related to that effort.
The text was updated successfully, but these errors were encountered: