Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

test: update tests with fixtures #318

Merged
merged 1 commit into from
Aug 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
pytest/
*.pytest_cache/
.coverage
.converage.*
pytest-coverage.txt
wandb/

Expand Down
10 changes: 5 additions & 5 deletions tests/algos/__snapshots__/test_algos.ambr
Original file line number Diff line number Diff line change
Expand Up @@ -77,17 +77,17 @@
)
# ---
# name: TestTorchAlgos.test_reproducibility[stable_learning_control.algos.pytorch.sac.sac].1
-0.3054710924625397
-0.17646123468875885
# ---
# name: TestTorchAlgos.test_reproducibility[stable_learning_control.algos.pytorch.sac.sac].2
-0.5438500046730042
-0.7749449014663696
# ---
# name: TestTorchAlgos.test_reproducibility[stable_learning_control.algos.pytorch.sac.sac].3
-0.5551561713218689
-0.4696856439113617
# ---
# name: TestTorchAlgos.test_reproducibility[stable_learning_control.algos.pytorch.sac.sac].4
0.7831009030342102
0.8471362590789795
# ---
# name: TestTorchAlgos.test_reproducibility[stable_learning_control.algos.pytorch.sac.sac].5
-0.43937113881111145
-0.3496301770210266
# ---
10 changes: 5 additions & 5 deletions tests/algos/gpu/__snapshots__/test_algos_gpu.ambr
Original file line number Diff line number Diff line change
Expand Up @@ -77,17 +77,17 @@
)
# ---
# name: TestTorchAlgosGPU.test_reproducibility[gpu-stable_learning_control.algos.pytorch.sac.sac].1
-0.7098895311355591
-0.5978871583938599
# ---
# name: TestTorchAlgosGPU.test_reproducibility[gpu-stable_learning_control.algos.pytorch.sac.sac].2
-0.1639314442873001
-0.613029956817627
# ---
# name: TestTorchAlgosGPU.test_reproducibility[gpu-stable_learning_control.algos.pytorch.sac.sac].3
-0.7671857476234436
-0.7007529735565186
# ---
# name: TestTorchAlgosGPU.test_reproducibility[gpu-stable_learning_control.algos.pytorch.sac.sac].4
0.415353924036026
0.7336636781692505
# ---
# name: TestTorchAlgosGPU.test_reproducibility[gpu-stable_learning_control.algos.pytorch.sac.sac].5
-0.8201737403869629
-0.8068016171455383
# ---
21 changes: 13 additions & 8 deletions tests/algos/gpu/test_algos_gpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,21 +20,26 @@
@pytest.mark.parametrize("algo", ALGOS)
@pytest.mark.parametrize("device", ["gpu"])
class TestTorchAlgosGPU:
env = gym.make("Pendulum-v1") # Used because it is a simple environment.
@pytest.fixture
def env(self):
"""Create Pendulum environment."""
env = gym.make("Pendulum-v1") # Used because it is a simple environment.

# Seed the environment.
env.np_random, seed = seeding.np_random(0)
env.action_space.seed(0)
env.observation_space.seed(0)
# Seed the environment.
env.np_random, _ = seeding.np_random(0)
env.action_space.seed(0)
env.observation_space.seed(0)

def test_reproducibility(self, algo, device, snapshot):
return env

def test_reproducibility(self, algo, device, snapshot, env):
"""Checks if the algorithm is still working as expected."""
# Import the algorithm run function.
run = getattr(importlib.import_module(algo), algo.split(".")[-1])

# Run the algorithm.
trained_policy, replay_buffer = run(
lambda: self.env,
lambda: env,
seed=0,
epochs=1,
update_after=400,
Expand All @@ -48,5 +53,5 @@ def test_reproducibility(self, algo, device, snapshot):

# Test if the actions returned by the policy are the same.
for _ in range(5):
action = trained_policy.get_action(self.env.observation_space.sample())
action = trained_policy.get_action(env.observation_space.sample())
assert action == snapshot
21 changes: 13 additions & 8 deletions tests/algos/test_algos.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,21 +19,26 @@

@pytest.mark.parametrize("algo", ALGOS)
class TestTorchAlgos:
env = gym.make("Pendulum-v1") # Used because it is a simple environment.
@pytest.fixture
def env(self):
"""Create Pendulum environment."""
env = gym.make("Pendulum-v1") # Used because it is a simple environment.

# Seed the environment.
env.np_random, seed = seeding.np_random(0)
env.action_space.seed(0)
env.observation_space.seed(0)
# Seed the environment.
env.np_random, _ = seeding.np_random(0)
env.action_space.seed(0)
env.observation_space.seed(0)

def test_reproducibility(self, algo, snapshot):
return env

def test_reproducibility(self, algo, snapshot, env):
"""Checks if the algorithm is still working as expected."""
# Import the algorithm run function.
run = getattr(importlib.import_module(algo), algo.split(".")[-1])

# Run the algorithm.
trained_policy, replay_buffer = run(
lambda: self.env,
lambda: env,
seed=0,
epochs=1,
update_after=400,
Expand All @@ -47,5 +52,5 @@ def test_reproducibility(self, algo, snapshot):

# Test if the actions returned by the policy are the same.
for _ in range(5):
action = trained_policy.get_action(self.env.observation_space.sample())
action = trained_policy.get_action(env.observation_space.sample())
assert action == snapshot
21 changes: 13 additions & 8 deletions tests/algos/tf2/gpu/test_tf2_algos_gpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,19 @@
@pytest.mark.parametrize("algo", ALGOS)
@pytest.mark.parametrize("device", ["gpu"])
class TestTF2AlgosGPU:
env = gym.make("Pendulum-v1") # Used because it is a simple environment.
@pytest.fixture
def env(self):
"""Create Pendulum environment."""
env = gym.make("Pendulum-v1") # Used because it is a simple environment.

# Seed the environment.
env.np_random, seed = seeding.np_random(0)
env.action_space.seed(0)
env.observation_space.seed(0)
# Seed the environment.
env.np_random, _ = seeding.np_random(0)
env.action_space.seed(0)
env.observation_space.seed(0)

def test_reproducibility(self, algo, device, snapshot):
return env

def test_reproducibility(self, algo, device, snapshot, env):
"""Checks if the algorithm is still working as expected."""
# Check if TensorFlow is available.
if not importlib.util.find_spec("tensorflow"):
Expand All @@ -45,7 +50,7 @@ def test_reproducibility(self, algo, device, snapshot):

# Run the algorithm.
trained_policy, replay_buffer = run(
lambda: self.env,
lambda: env,
seed=0,
epochs=1,
update_after=400,
Expand All @@ -59,5 +64,5 @@ def test_reproducibility(self, algo, device, snapshot):

# Test if the actions returned by the policy are the same.
for _ in range(5):
action = trained_policy.get_action(self.env.observation_space.sample())
action = trained_policy.get_action(env.observation_space.sample())
assert action.numpy() == snapshot
21 changes: 13 additions & 8 deletions tests/algos/tf2/test_tf2_algos.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,14 +19,19 @@

@pytest.mark.parametrize("algo", ALGOS)
class TestTF2Algos:
env = gym.make("Pendulum-v1") # Used because it is a simple environment.
@pytest.fixture
def env(self):
"""Create Pendulum environment."""
env = gym.make("Pendulum-v1") # Used because it is a simple environment.

# Seed the environment.
env.np_random, seed = seeding.np_random(0)
env.action_space.seed(0)
env.observation_space.seed(0)
# Seed the environment.
env.np_random, _ = seeding.np_random(0)
env.action_space.seed(0)
env.observation_space.seed(0)

def test_reproducibility(self, algo, snapshot):
return env

def test_reproducibility(self, algo, snapshot, env):
"""Checks if the algorithm is still working as expected."""
# Check if TensorFlow is available.
if not importlib.util.find_spec("tensorflow"):
Expand All @@ -39,7 +44,7 @@ def test_reproducibility(self, algo, snapshot):

# Run the algorithm.
trained_policy, replay_buffer = run(
lambda: self.env,
lambda: env,
seed=0,
epochs=1,
update_after=400,
Expand All @@ -53,5 +58,5 @@ def test_reproducibility(self, algo, snapshot):

# Test if the actions returned by the policy are the same.
for _ in range(5):
action = trained_policy.get_action(self.env.observation_space.sample())
action = trained_policy.get_action(env.observation_space.sample())
assert action.numpy() == snapshot