-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
408 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
import math | ||
import gym | ||
from gym import spaces, logger | ||
from gym.utils import seeding | ||
import numpy as np | ||
import csv | ||
import matplotlib.pyplot as plt | ||
|
||
# This example is the RL based stationary Kalman filter | ||
|
||
# the dynamic system whose state is to be estimated: | ||
# x(k+1)=Ax(k)+w(k) | ||
# x_1: angle | ||
# x_2: frequency | ||
# x_3: amplitude | ||
# y(k)=x_3(k)*sin(x_1(k))+v(k) | ||
# A=[1,dt,0;0,1,0;0,0,1] | ||
# x(0)~N([0;10;1],[3,0,0;0,3,0;0,0,3]) | ||
# w(k)~N([0;0;0],[1/3*(dt)^3*q_1,1/2*(dt)^2*q_1,0;1/2*(dt)^2*q_1,dt*q_1,0;0,0,dt*q_2]) | ||
# v(k)~N(0,1) | ||
|
||
# estimator design | ||
# \hat(x)(k+1)=A\hat(x)(k)+u | ||
# where u=[u1,u2,u3]', u=l(\hat(x)(k),y(k)) come from the policy network l(.,.) | ||
|
||
|
||
class Ex3_EKF(gym.Env): | ||
def __init__(self): | ||
|
||
self.t = 0 | ||
self.dt = 0.1 | ||
self.q1 = 0.01 | ||
self.g = 9.81 | ||
# self.l = max(0.5,1 + np.random.normal(0,0.5)) | ||
self.l = 1 | ||
# self.mean0 = [1.5, 0] | ||
# self.cov0_1 = 0.1 | ||
# self.cov0_2 = 0.1 | ||
# self.cov0_1 = 0 | ||
# self.cov0_2 = 0 | ||
self.mean1 = [0, 0] | ||
self.cov1 = np.array( | ||
[ | ||
[1 / 3 * (self.dt) ** 3 * self.q1, 1 / 2 * (self.dt) ** 2 * self.q1], | ||
[1 / 2 * (self.dt) ** 2 * self.q1, self.dt * self.q1], | ||
] | ||
) | ||
# self.cov1 = np.array([[0,0],[0,0]]) | ||
self.mean2 = 0 | ||
self.cov2 = 1e-2 | ||
# self.cov2 = 0 | ||
self.missing_rate = 0 | ||
self.sigma = 0 | ||
# displacement limit set to be [-high, high] | ||
high = np.array([10000, 10000]) | ||
|
||
self.action_space = spaces.Box( | ||
low=np.array([-10.0, -10.0]), high=np.array([10.0, 10.0]), dtype=np.float32 | ||
) | ||
self.observation_space = spaces.Box(-high, high, dtype=np.float32) | ||
|
||
self.seed() | ||
self.viewer = None | ||
self.state = None | ||
self.output = None | ||
|
||
self.steps_beyond_done = None | ||
|
||
def seed(self, seed=None): | ||
self.np_random, seed = seeding.np_random(seed) | ||
return [seed] | ||
|
||
def step(self, action): | ||
u1, u2 = action | ||
t = self.t | ||
input = 0 * np.cos(t) * self.dt | ||
# Slave | ||
hat_x_1, hat_x_2, x_1, x_2 = self.state | ||
# y_1 = self.output | ||
# hat_y_1 = np.sin(hat_x_1) | ||
# | ||
# hat_x_1 = hat_x_1 + self.dt * hat_x_2 + self.dt * u1*(y_1-hat_y_1) | ||
# hat_x_2 = hat_x_2 - self.g*np.sin(hat_x_1)*self.dt + self.dt * u2*(y_1-hat_y_1) + input | ||
|
||
# Master | ||
|
||
x_1 = x_1 + self.dt * x_2 | ||
x_2 = x_2 - self.g * self.l * np.sin(x_1) * self.dt + input | ||
|
||
state = np.array([x_1, x_2]) | ||
# add process noise | ||
state = state + np.random.multivariate_normal(self.mean1, self.cov1).flatten() | ||
x_1, x_2 = state | ||
|
||
y_1 = np.sin(x_1) + np.random.normal(self.mean2, np.sqrt(self.cov2)) | ||
hat_y_1 = np.sin(hat_x_1 + self.dt * hat_x_2) | ||
|
||
# flag=1: received | ||
# flag=0: dropout | ||
(flag,) = np.random.binomial(1, 1 - self.missing_rate, 1) | ||
# drop_rate = 1 | ||
# to construct cost | ||
if flag == 1: | ||
hat_x_1 = hat_x_1 + self.dt * hat_x_2 + self.dt * u1 * (y_1 - hat_y_1) | ||
hat_x_2 = ( | ||
hat_x_2 | ||
- self.g * np.sin(hat_x_1) * self.dt | ||
+ self.dt * u2 * (y_1 - hat_y_1) | ||
+ input | ||
) | ||
else: | ||
hat_x_1 = hat_x_1 + self.dt * hat_x_2 | ||
hat_x_2 = hat_x_2 - self.g * np.sin(hat_x_1) * self.dt + input | ||
|
||
# hat_x_1 = hat_x_1 + self.dt * hat_x_2 + self.dt * u1 * (y_1 - hat_y_1) | ||
# hat_x_2 = hat_x_2 - self.g * np.sin(hat_x_1) * self.dt + self.dt * u2 * (y_1 - hat_y_1) + input | ||
|
||
cost_u = ( | ||
np.square(u1 * (y_1 - hat_y_1)) * self.dt | ||
+ np.square(u2 * (y_1 - hat_y_1)) * self.dt | ||
) | ||
# cost_y = np.abs(hat_y_1 - y_1) * self.dt | ||
# cost = cost_y | ||
cost = np.square(hat_x_1 - x_1) + np.square(hat_x_2 - x_2) | ||
# cost = np.abs(hat_x_1 - x_1)**1 + np.abs(hat_x_2 - x_2)**1 | ||
# print('cost',cost) | ||
if cost > 100: | ||
done = True | ||
else: | ||
done = False | ||
|
||
# update new for next round | ||
self.state = np.array([hat_x_1, hat_x_2, x_1, x_2]) | ||
self.output = y_1 | ||
self.t = self.t + self.dt | ||
|
||
# return np.array([hat_x_1,hat_x_2,y_1, y_2]), cost, done, dict(reference=y_1, state_of_interest=np.array([hat_y_1,hat_y_2])) | ||
|
||
return ( | ||
np.array([hat_x_1, hat_x_2]), | ||
cost, | ||
done, | ||
dict( | ||
reference=y_1, | ||
state_of_interest=np.array([hat_x_1 - x_1, hat_x_2 - x_2]), | ||
), | ||
) | ||
|
||
def reset(self): | ||
x_1 = np.random.uniform(-np.pi / 2, np.pi / 2) | ||
x_2 = np.random.uniform(-np.pi / 2, np.pi / 2) | ||
hat_x_1 = x_1 + np.random.uniform(-np.pi / 4, np.pi / 4) | ||
hat_x_2 = x_2 + np.random.uniform(-np.pi / 4, np.pi / 4) | ||
self.state = np.array([hat_x_1, hat_x_2, x_1, x_2]) | ||
self.output = np.sin(x_1) + np.random.normal(self.mean2, np.sqrt(self.cov2)) | ||
y_1 = self.output | ||
y_2 = np.sin(x_2) + np.random.normal(self.mean2, np.sqrt(self.cov2)) | ||
return np.array([hat_x_1, hat_x_2]) | ||
|
||
def render(self, mode="human"): | ||
|
||
return | ||
|
||
|
||
if __name__ == "__main__": | ||
env = Ex3_EKF() | ||
T = 10 | ||
path = [] | ||
t1 = [] | ||
s = env.reset() | ||
for i in range(int(T / env.dt)): | ||
s, r, info, done = env.step(np.array([0, 0])) | ||
path.append(s) | ||
t1.append(i * env.dt) | ||
|
||
fig = plt.figure(figsize=(9, 6)) | ||
ax = fig.add_subplot(111) | ||
|
||
ax.plot(t1, np.array(path)[:, 0], color="yellow", label="x1") | ||
ax.plot(t1, np.array(path)[:, 1], color="green", label="x2") | ||
# ax.plot(t1, np.array(path)[:, 2], color='black', label='measurement') | ||
|
||
handles, labels = ax.get_legend_handles_labels() | ||
# | ||
ax.legend(handles, labels, loc=2, fancybox=False, shadow=False) | ||
plt.show() | ||
print("done") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
import math | ||
import gym | ||
from gym import spaces, logger | ||
from gym.utils import seeding | ||
import numpy as np | ||
import csv | ||
import matplotlib.pyplot as plt | ||
|
||
# This example is the RL based stationary Kalman filter | ||
|
||
# the dynamic system whose state is to be estimated: | ||
# x(k+1)=Ax(k)+w(k) | ||
# x_1: angle | ||
# x_2: frequency | ||
# x_3: amplitude | ||
# y(k)=x_3(k)*sin(x_1(k))+v(k) | ||
# A=[1,dt,0;0,1,0;0,0,1] | ||
# x(0)~N([0;10;1],[3,0,0;0,3,0;0,0,3]) | ||
# w(k)~N([0;0;0],[1/3*(dt)^3*q_1,1/2*(dt)^2*q_1,0;1/2*(dt)^2*q_1,dt*q_1,0;0,0,dt*q_2]) | ||
# v(k)~N(0,1) | ||
|
||
# estimator design | ||
# \hat(x)(k+1)=A\hat(x)(k)+u | ||
# where u=[u1,u2,u3]', u=l(\hat(x)(k),y(k)) come from the policy network l(.,.) | ||
|
||
|
||
class Ex3_EKF_negative(gym.Env): | ||
def __init__(self): | ||
|
||
self.t = 0 | ||
self.dt = 0.1 | ||
self.q1 = 0.01 | ||
self.g = 9.81 | ||
# self.l = max(0.5,1 + np.random.normal(0,0.5)) | ||
self.l = 1 | ||
# self.mean0 = [1.5, 0] | ||
# self.cov0_1 = 0.1 | ||
# self.cov0_2 = 0.1 | ||
# self.cov0_1 = 0 | ||
# self.cov0_2 = 0 | ||
self.mean1 = [0, 0] | ||
self.cov1 = np.array( | ||
[ | ||
[1 / 3 * (self.dt) ** 3 * self.q1, 1 / 2 * (self.dt) ** 2 * self.q1], | ||
[1 / 2 * (self.dt) ** 2 * self.q1, self.dt * self.q1], | ||
] | ||
) | ||
# self.cov1 = np.array([[0,0],[0,0]]) | ||
self.mean2 = 0 | ||
self.cov2 = 1e-2 | ||
# self.cov2 = 0 | ||
self.missing_rate = 0 | ||
self.sigma = 0 | ||
# displacement limit set to be [-high, high] | ||
high = np.array([10000, 10000]) | ||
|
||
self.action_space = spaces.Box( | ||
low=np.array([-10.0, -10.0]), high=np.array([10.0, 10.0]), dtype=np.float32 | ||
) | ||
self.observation_space = spaces.Box(-high, high, dtype=np.float32) | ||
|
||
self.seed() | ||
self.viewer = None | ||
self.state = None | ||
self.output = None | ||
|
||
self.steps_beyond_done = None | ||
|
||
def seed(self, seed=None): | ||
self.np_random, seed = seeding.np_random(seed) | ||
return [seed] | ||
|
||
def step(self, action): | ||
u1, u2 = action | ||
t = self.t | ||
input = 0 * np.cos(t) * self.dt | ||
# Slave | ||
hat_x_1, hat_x_2, x_1, x_2 = self.state | ||
# y_1 = self.output | ||
# hat_y_1 = np.sin(hat_x_1) | ||
# | ||
# hat_x_1 = hat_x_1 + self.dt * hat_x_2 + self.dt * u1*(y_1-hat_y_1) | ||
# hat_x_2 = hat_x_2 - self.g*np.sin(hat_x_1)*self.dt + self.dt * u2*(y_1-hat_y_1) + input | ||
|
||
# Master | ||
|
||
x_1 = x_1 + self.dt * x_2 | ||
x_2 = x_2 - self.g * self.l * np.sin(x_1) * self.dt + input | ||
|
||
state = np.array([x_1, x_2]) | ||
# add process noise | ||
state = state + np.random.multivariate_normal(self.mean1, self.cov1).flatten() | ||
x_1, x_2 = state | ||
|
||
y_1 = np.sin(x_1) + np.random.normal(self.mean2, np.sqrt(self.cov2)) | ||
hat_y_1 = np.sin(hat_x_1 + self.dt * hat_x_2) | ||
|
||
# flag=1: received | ||
# flag=0: dropout | ||
(flag,) = np.random.binomial(1, 1 - self.missing_rate, 1) | ||
# drop_rate = 1 | ||
# to construct cost | ||
if flag == 1: | ||
hat_x_1 = hat_x_1 + self.dt * hat_x_2 + self.dt * u1 * (y_1 - hat_y_1) | ||
hat_x_2 = ( | ||
hat_x_2 | ||
- self.g * np.sin(hat_x_1) * self.dt | ||
+ self.dt * u2 * (y_1 - hat_y_1) | ||
+ input | ||
) | ||
else: | ||
hat_x_1 = hat_x_1 + self.dt * hat_x_2 | ||
hat_x_2 = hat_x_2 - self.g * np.sin(hat_x_1) * self.dt + input | ||
|
||
# hat_x_1 = hat_x_1 + self.dt * hat_x_2 + self.dt * u1 * (y_1 - hat_y_1) | ||
# hat_x_2 = hat_x_2 - self.g * np.sin(hat_x_1) * self.dt + self.dt * u2 * (y_1 - hat_y_1) + input | ||
|
||
# NOTE: OLD COST - Minimizeing the return | ||
# cost_u = ( | ||
# np.square(u1 * (y_1 - hat_y_1)) * self.dt | ||
# + np.square(u2 * (y_1 - hat_y_1)) * self.dt | ||
# ) | ||
# # cost_y = np.abs(hat_y_1 - y_1) * self.dt | ||
# # cost = cost_y | ||
# cost = np.square(hat_x_1 - x_1) + np.square(hat_x_2 - x_2) | ||
# # cost = np.abs(hat_x_1 - x_1)**1 + np.abs(hat_x_2 - x_2)**1 | ||
# # print('cost',cost) | ||
# if cost > 100: | ||
# done = True | ||
# else: | ||
# done = False | ||
|
||
# NOTE: Cost when maximizing the return | ||
cost_u = -( | ||
np.square(u1 * (y_1 - hat_y_1)) * self.dt | ||
+ np.square(u2 * (y_1 - hat_y_1)) * self.dt | ||
) | ||
# cost_y = np.abs(hat_y_1 - y_1) * self.dt | ||
# cost = cost_y | ||
cost = -1.0 * (np.square(hat_x_1 - x_1) + np.square(hat_x_2 - x_2)) | ||
# cost = np.abs(hat_x_1 - x_1)**1 + np.abs(hat_x_2 - x_2)**1 | ||
# print('cost',cost) | ||
if cost < -100: | ||
done = True | ||
else: | ||
done = False | ||
|
||
# update new for next round | ||
self.state = np.array([hat_x_1, hat_x_2, x_1, x_2]) | ||
self.output = y_1 | ||
self.t = self.t + self.dt | ||
|
||
# return np.array([hat_x_1,hat_x_2,y_1, y_2]), cost, done, dict(reference=y_1, state_of_interest=np.array([hat_y_1,hat_y_2])) | ||
|
||
return ( | ||
np.array([hat_x_1, hat_x_2]), | ||
cost, | ||
done, | ||
dict( | ||
reference=y_1, | ||
state_of_interest=np.array([hat_x_1 - x_1, hat_x_2 - x_2]), | ||
), | ||
) | ||
|
||
def reset(self): | ||
x_1 = np.random.uniform(-np.pi / 2, np.pi / 2) | ||
x_2 = np.random.uniform(-np.pi / 2, np.pi / 2) | ||
hat_x_1 = x_1 + np.random.uniform(-np.pi / 4, np.pi / 4) | ||
hat_x_2 = x_2 + np.random.uniform(-np.pi / 4, np.pi / 4) | ||
self.state = np.array([hat_x_1, hat_x_2, x_1, x_2]) | ||
self.output = np.sin(x_1) + np.random.normal(self.mean2, np.sqrt(self.cov2)) | ||
y_1 = self.output | ||
y_2 = np.sin(x_2) + np.random.normal(self.mean2, np.sqrt(self.cov2)) | ||
return np.array([hat_x_1, hat_x_2]) | ||
|
||
def render(self, mode="human"): | ||
|
||
return | ||
|
||
|
||
if __name__ == "__main__": | ||
env = Ex3_EKF() | ||
T = 10 | ||
path = [] | ||
t1 = [] | ||
s = env.reset() | ||
for i in range(int(T / env.dt)): | ||
s, r, info, done = env.step(np.array([0, 0])) | ||
path.append(s) | ||
t1.append(i * env.dt) | ||
|
||
fig = plt.figure(figsize=(9, 6)) | ||
ax = fig.add_subplot(111) | ||
|
||
ax.plot(t1, np.array(path)[:, 0], color="yellow", label="x1") | ||
ax.plot(t1, np.array(path)[:, 1], color="green", label="x2") | ||
# ax.plot(t1, np.array(path)[:, 2], color='black', label='measurement') | ||
|
||
handles, labels = ax.get_legend_handles_labels() | ||
# | ||
ax.legend(handles, labels, loc=2, fancybox=False, shadow=False) | ||
plt.show() | ||
print("done") |
Oops, something went wrong.