go-funk
is a modern Go library based on reflect.
Generic helpers rely on reflect, be careful this code runs exclusively on runtime so you must have a good test suite.
These helpers have started as an experiment to learn reflect. It may look like lodash in some aspects but
it will have its own roadmap. lodash is an awesome library with a lot of work behind it, all features included in
go-funk
come from internal use cases.
You can also find typesafe implementation in the godoc.
Long story, short answer because func
is a reserved word in Go, I wanted something similar.
Initially this project was named fn
I don't need to explain why that was a bad idea for french speakers :)
Let's funk
!
<3
go get github.com/thoas/go-funk
import "github.com/thoas/go-funk"
These examples will be based on the following data model:
type Foo struct {
ID int
FirstName string `tag_name:"tag 1"`
LastName string `tag_name:"tag 2"`
Age int `tag_name:"tag 3"`
}
func (f Foo) TableName() string {
return "foo"
}
With fixtures:
f := &Foo{
ID: 1,
FirstName: "Foo",
LastName: "Bar",
Age: 30,
}
You can import go-funk
using a basic statement:
import "github.com/thoas/go-funk"
Returns true if an element is present in a iteratee (slice, map, string).
One frustrating thing in Go is to implement contains
methods for each type, for example:
func ContainsInt(s []int, e int) bool {
for _, a := range s {
if a == e {
return true
}
}
return false
}
this can be replaced by funk.Contains
:
// slice of string
funk.Contains([]string{"foo", "bar"}, "bar") // true
// slice of Foo ptr
funk.Contains([]*Foo{f}, f) // true
funk.Contains([]*Foo{f}, nil) // false
b := &Foo{
ID: 2,
FirstName: "Florent",
LastName: "Messa",
Age: 28,
}
funk.Contains([]*Foo{f}, b) // false
// string
funk.Contains("florent", "rent") // true
funk.Contains("florent", "foo") // false
// even map
funk.Contains(map[int]string{1: "Florent"}, 1) // true
see also, typesafe implementations: ContainsInt, ContainsInt64, ContainsFloat32, ContainsFloat64, ContainsString
Returns the intersection between two collections.
funk.Intersect([]int{1, 2, 3, 4}, []int{2, 4, 6}) // []int{2, 4}
funk.Intersect([]string{"foo", "bar", "hello", "bar"}, []string{"foo", "bar"}) // []string{"foo", "bar"}
see also, typesafe implementations: IntersectString
Returns the difference between two collections.
funk.Difference([]int{1, 2, 3, 4}, []int{2, 4, 6}) // []int{1, 3}, []int{6}
funk.Difference([]string{"foo", "bar", "hello", "bar"}, []string{"foo", "bar"}) // []string{"hello"}, []string{}
see also, typesafe implementations: DifferenceString
Gets the index at which the first occurrence of a value is found in an array or return -1 if the value cannot be found.
// slice of string
funk.IndexOf([]string{"foo", "bar"}, "bar") // 1
funk.IndexOf([]string{"foo", "bar"}, "gilles") // -1
see also, typesafe implementations: IndexOfInt, IndexOfInt64, IndexOfFloat32, IndexOfFloat64, IndexOfString
Gets the index at which the last occurrence of a value is found in an array or return -1 if the value cannot be found.
// slice of string
funk.LastIndexOf([]string{"foo", "bar", "bar"}, "bar") // 2
funk.LastIndexOf([]string{"foo", "bar"}, "gilles") // -1
see also, typesafe implementations: LastIndexOfInt, LastIndexOfInt64, LastIndexOfFloat32, LastIndexOfFloat64, LastIndexOfString
Transforms a slice of structs to a map based on a pivot
field.
f := &Foo{
ID: 1,
FirstName: "Gilles",
LastName: "Fabio",
Age: 70,
}
b := &Foo{
ID: 2,
FirstName: "Florent",
LastName: "Messa",
Age: 80,
}
results := []*Foo{f, b}
mapping := funk.ToMap(results, "ID") // map[int]*Foo{1: f, 2: b}
Filters a slice based on a predicate.
r := funk.Filter([]int{1, 2, 3, 4}, func(x int) bool {
return x%2 == 0
}) // []int{2, 4}
see also, typesafe implementations: FilterInt, FilterInt64, FilterFloat32, FilterFloat64, FilterString
Finds an element in a slice based on a predicate.
r := funk.Find([]int{1, 2, 3, 4}, func(x int) bool {
return x%2 == 0
}) // 2
see also, typesafe implementations: FindInt, FindInt64, FindFloat32, FindFloat64, FindString
Manipulates an iteratee (map, slice) and transforms it to another type:
- map -> slice
- map -> map
- slice -> map
- slice -> slice
r := funk.Map([]int{1, 2, 3, 4}, func(x int) int {
return x * 2
}) // []int{2, 4, 6, 8}
r := funk.Map([]int{1, 2, 3, 4}, func(x int) string {
return "Hello"
}) // []string{"Hello", "Hello", "Hello", "Hello"}
r = funk.Map([]int{1, 2, 3, 4}, func(x int) (int, int) {
return x, x
}) // map[int]int{1: 1, 2: 2, 3: 3, 4: 4}
mapping := map[int]string{
1: "Florent",
2: "Gilles",
}
r = funk.Map(mapping, func(k int, v string) int {
return k
}) // []int{1, 2}
r = funk.Map(mapping, func(k int, v string) (string, string) {
return fmt.Sprintf("%d", k), v
}) // map[string]string{"1": "Florent", "2": "Gilles"}
Retrieves the value at path of struct(s).
var bar *Bar = &Bar{
Name: "Test",
Bars: []*Bar{
&Bar{
Name: "Level1-1",
Bar: &Bar{
Name: "Level2-1",
},
},
&Bar{
Name: "Level1-2",
Bar: &Bar{
Name: "Level2-2",
},
},
},
}
var foo *Foo = &Foo{
ID: 1,
FirstName: "Dark",
LastName: "Vador",
Age: 30,
Bar: bar,
Bars: []*Bar{
bar,
bar,
},
}
funk.Get([]*Foo{foo}, "Bar.Bars.Bar.Name") // []string{"Level2-1", "Level2-2"}
funk.Get(foo, "Bar.Bars.Bar.Name") // []string{"Level2-1", "Level2-2"}
funk.Get(foo, "Bar.Name") // Test
funk.Get
also handles nil
values:
bar := &Bar{
Name: "Test",
}
foo1 := &Foo{
ID: 1,
FirstName: "Dark",
LastName: "Vador",
Age: 30,
Bar: bar,
}
foo2 := &Foo{
ID: 1,
FirstName: "Dark",
LastName: "Vador",
Age: 30,
} // foo2.Bar is nil
funk.Get([]*Foo{foo1, foo2}, "Bar.Name") // []string{"Test"}
funk.Get(foo2, "Bar.Name") // nil
Retrieves the value of the pointer or default.
str := "hello world"
GetOrElse(&str, "foobar") // string{"hello world"}
GetOrElse(str, "foobar") // string{"hello world"}
GetOrElse(nil, "foobar") // string{"foobar"}
Creates an array of the own enumerable map keys or struct field names.
funk.Keys(map[string]int{"one": 1, "two": 2}) // []string{"one", "two"} (iteration order is not guaranteed)
foo := &Foo{
ID: 1,
FirstName: "Dark",
LastName: "Vador",
Age: 30,
}
funk.Keys(foo) // []string{"ID", "FirstName", "LastName", "Age"} (iteration order is not guaranteed)
Creates an array of the own enumerable map values or struct field values.
funk.Values(map[string]int{"one": 1, "two": 2}) // []string{1, 2} (iteration order is not guaranteed)
foo := &Foo{
ID: 1,
FirstName: "Dark",
LastName: "Vador",
Age: 30,
}
funk.Values(foo) // []interface{}{1, "Dark", "Vador", 30} (iteration order is not guaranteed)
Range over an iteratee (map, slice).
funk.ForEach([]int{1, 2, 3, 4}, func(x int) {
fmt.Println(x)
})
Range over an iteratee (map, slice) from the right.
results := []int{}
funk.ForEachRight([]int{1, 2, 3, 4}, func(x int) {
results = append(results, x)
})
fmt.Println(results) // []int{4, 3, 2, 1}
Creates an array of elements split into groups with the length of the size. If array can't be split evenly, the final chunk will be the remaining element.
funk.Chunk([]int{1, 2, 3, 4, 5}, 2) // [][]int{[]int{1, 2}, []int{3, 4}, []int{5}}
Recursively flattens an array.
funk.FlattenDeep([][]int{[]int{1, 2}, []int{3, 4}}) // []int{1, 2, 3, 4}
Creates an array with unique values.
funk.Uniq([]int{0, 1, 1, 2, 3, 0, 0, 12}) // []int{0, 1, 2, 3, 12}
see also, typesafe implementations: UniqInt, UniqInt64, UniqFloat32, UniqFloat64, UniqString
Creates an array/slice with n elements dropped from the beginning.
funk.Drop([]int{0, 0, 0, 0}, 3) // []int{0}
see also, typesafe implementations: DropInt, DropInt32, DropInt64, DropFloat32, DropFloat64, DropString
Gets all but the last element of array.
funk.Initial([]int{0, 1, 2, 3, 4}) // []int{0, 1, 2, 3}
Gets all but the first element of array.
funk.Tail([]int{0, 1, 2, 3, 4}) // []int{1, 2, 3, 4}
Creates an array of shuffled values.
funk.Shuffle([]int{0, 1, 2, 3, 4}) // []int{2, 1, 3, 4, 0}
see also, typesafe implementations: ShuffleInt, ShuffleInt64, ShuffleFloat32, ShuffleFloat64, ShuffleString
Returns the subtraction between two collections. It preserve order.
funk.Subtract([]int{0, 1, 2, 3, 4}, []int{0, 4}) // []int{1, 2, 3}
funk.Subtract([]int{0, 3, 2, 3, 4}, []int{0, 4}) // []int{3, 2, 3}
see also, typesafe implementations: SubtractString_
Computes the sum of the values in an array.
funk.Sum([]int{0, 1, 2, 3, 4}) // 10.0
funk.Sum([]interface{}{0.5, 1, 2, 3, 4}) // 10.5
see also, typesafe implementations: SumInt, SumInt64, SumFloat32, SumFloat64
Transforms an array such that the first element will become the last, the second element will become the second to last, etc.
funk.Reverse([]int{0, 1, 2, 3, 4}) // []int{4, 3, 2, 1, 0}
see also, typesafe implementations: ReverseInt, ReverseInt64, ReverseFloat32, ReverseFloat64, ReverseString, ReverseStrings
Returns a slice based on an element.
funk.SliceOf(f) // will return a []*Foo{f}
Generates a random int, based on a min and max values.
funk.RandomInt(0, 100) // will be between 0 and 100
Generates a random string with a fixed length.
funk.RandomString(4) // will be a string of 4 random characters
Generates a sharded string with a fixed length and depth.
funk.Shard("e89d66bdfdd4dd26b682cc77e23a86eb", 1, 2, false) // []string{"e", "8", "e89d66bdfdd4dd26b682cc77e23a86eb"}
funk.Shard("e89d66bdfdd4dd26b682cc77e23a86eb", 2, 2, false) // []string{"e8", "9d", "e89d66bdfdd4dd26b682cc77e23a86eb"}
funk.Shard("e89d66bdfdd4dd26b682cc77e23a86eb", 2, 3, true) // []string{"e8", "9d", "66", "bdfdd4dd26b682cc77e23a86eb"}
Returns true if a collection is a subset of another
funk.Subset([]int{1, 2, 4}, []int{1, 2, 3, 4, 5}) // true
funk.Subset([]string{"foo", "bar"},[]string{"foo", "bar", "hello", "bar", "hi"}) //true
go-funk
currently has an open issue about performance, don't hesitate to participate in the discussion
to enhance the generic helpers implementations.
Let's stop beating around the bush, a typesafe implementation in pure Go of funk.Contains
, let's say for example:
func ContainsInt(s []int, e int) bool {
for _, a := range s {
if a == e {
return true
}
}
return false
}
will always outperform an implementation based on reflect in terms of speed and allocs because of how it's implemented in the language.
If you want a similarity, gorm will always be slower than sqlx (which is very low level btw) and will use more allocs.
You must not think generic helpers of go-funk
as a replacement when you are dealing with performance in your codebase,
you should use typesafe implementations instead.
- Ping me on twitter @thoas (DMs, mentions, whatever :))
- Fork the project
- Fix open issues or request new features
Don't hesitate ;)
- Florent Messa
- Gilles Fabio
- Alexey Pokhozhaev
- Alexandre Nicolaie