-
Notifications
You must be signed in to change notification settings - Fork 102
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Devon
committed
Jan 15, 2019
1 parent
593ae61
commit 76a443c
Showing
6 changed files
with
323 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,297 @@ | ||
'''Module for making resnet encoders. | ||
''' | ||
|
||
import torch | ||
import torch.nn as nn | ||
|
||
from cortex_DIM.nn_modules.convnet import Convnet | ||
from cortex_DIM.nn_modules.misc import Fold, Unfold, View | ||
|
||
|
||
_nonlin_idx = 6 | ||
|
||
|
||
class ResBlock(Convnet): | ||
'''Residual block for ResNet | ||
''' | ||
|
||
def create_layers(self, shape, conv_args=None): | ||
'''Creates layers | ||
Args: | ||
shape: Shape of input. | ||
conv_args: Layer arguments for block. | ||
''' | ||
|
||
# Move nonlinearity to a separate step for residual. | ||
final_nonlin = conv_args[-1][_nonlin_idx] | ||
conv_args[-1] = list(conv_args[-1]) | ||
conv_args[-1][_nonlin_idx] = None | ||
conv_args.append((None, 0, 0, 0, False, False, final_nonlin, None)) | ||
|
||
super().create_layers(shape, conv_args=conv_args) | ||
|
||
if self.conv_shape != shape: | ||
dim_x, dim_y, dim_in = shape | ||
dim_x_, dim_y_, dim_out = self.conv_shape | ||
stride = dim_x // dim_x_ | ||
next_x, _ = self.next_size(dim_x, dim_y, 1, stride, 0) | ||
assert next_x == dim_x_, (self.conv_shape, shape) | ||
|
||
self.downsample = nn.Sequential( | ||
nn.Conv2d(dim_in, dim_out, kernel_size=1, stride=stride, padding=0, bias=False), | ||
nn.BatchNorm2d(dim_out), | ||
) | ||
else: | ||
self.downsample = None | ||
|
||
def forward(self, x: torch.Tensor): | ||
'''Forward pass | ||
Args: | ||
x: Input. | ||
Returns: | ||
torch.Tensor or list of torch.Tensor. | ||
''' | ||
|
||
if self.downsample is not None: | ||
residual = self.downsample(x) | ||
else: | ||
residual = x | ||
|
||
x = self.conv_layers[-1](self.conv_layers[:-1](x) + residual) | ||
|
||
return x | ||
|
||
|
||
class ResNet(Convnet): | ||
def create_layers(self, shape, conv_before_args=None, res_args=None, conv_after_args=None, fc_args=None): | ||
'''Creates layers | ||
Args: | ||
shape: Shape of the input. | ||
conv_before_args: Arguments for convolutional layers before residuals. | ||
res_args: Residual args. | ||
conv_after_args: Arguments for convolutional layers after residuals. | ||
fc_args: Fully-connected arguments. | ||
''' | ||
|
||
dim_x, dim_y, dim_in = shape | ||
shape = (dim_x, dim_y, dim_in) | ||
self.conv_before_layers, self.conv_before_shape = self.create_conv_layers(shape, conv_before_args) | ||
self.res_layers, self.res_shape = self.create_res_layers(self.conv_before_shape, res_args) | ||
self.conv_after_layers, self.conv_after_shape = self.create_conv_layers(self.res_shape, conv_after_args) | ||
|
||
dim_x, dim_y, dim_out = self.conv_after_shape | ||
dim_r = dim_x * dim_y * dim_out | ||
self.reshape = View(-1, dim_r) | ||
self.fc_layers, _ = self.create_linear_layers(dim_r, fc_args) | ||
|
||
def create_res_layers(self, shape, block_args=None): | ||
'''Creates a set of residual blocks. | ||
Args: | ||
shape: input shape. | ||
block_args: Arguments for blocks. | ||
Returns: | ||
nn.Sequential: sequence of residual blocks. | ||
''' | ||
|
||
res_layers = nn.Sequential() | ||
block_args = block_args or [] | ||
|
||
for i, (conv_args, n_blocks) in enumerate(block_args): | ||
block = ResBlock(shape, conv_args=conv_args) | ||
res_layers.add_module('block_{}_0'.format(i), block) | ||
|
||
for j in range(1, n_blocks): | ||
shape = block.conv_shape | ||
block = ResBlock(shape, conv_args=conv_args) | ||
res_layers.add_module('block_{}_{}'.format(i, j), block) | ||
shape = block.conv_shape | ||
|
||
return res_layers, shape | ||
|
||
def forward(self, x: torch.Tensor, return_full_list=False): | ||
'''Forward pass | ||
Args: | ||
x: Input. | ||
return_full_list: Optional, returns all layer outputs. | ||
Returns: | ||
torch.Tensor or list of torch.Tensor. | ||
''' | ||
|
||
if return_full_list: | ||
conv_before_out = [] | ||
for conv_layer in self.conv_before_layers: | ||
x = conv_layer(x) | ||
conv_before_out.append(x) | ||
else: | ||
conv_before_out = self.conv_layers(x) | ||
x = conv_before_out | ||
|
||
if return_full_list: | ||
res_out = [] | ||
for res_layer in self.res_layers: | ||
x = res_layer(x) | ||
res_out.append(x) | ||
else: | ||
res_out = self.res_layers(x) | ||
x = res_out | ||
|
||
if return_full_list: | ||
conv_after_out = [] | ||
for conv_layer in self.conv_after_layers: | ||
x = conv_layer(x) | ||
conv_after_out.append(x) | ||
else: | ||
conv_after_out = self.conv_after_layers(x) | ||
x = conv_after_out | ||
|
||
x = self.reshape(x) | ||
|
||
if return_full_list: | ||
fc_out = [] | ||
for fc_layer in self.fc_layers: | ||
x = fc_layer(x) | ||
fc_out.append(x) | ||
else: | ||
fc_out = self.fc_layers(x) | ||
|
||
return conv_before_out, res_out, conv_after_out, fc_out | ||
|
||
|
||
class FoldedResNet(ResNet): | ||
'''Resnet with strided crop input. | ||
''' | ||
|
||
def create_layers(self, shape, crop_size=8, conv_before_args=None, res_args=None, | ||
conv_after_args=None, fc_args=None): | ||
'''Creates layers | ||
Args: | ||
shape: Shape of the input. | ||
crop_size: Size of the crops. | ||
conv_before_args: Arguments for convolutional layers before residuals. | ||
res_args: Residual args. | ||
conv_after_args: Arguments for convolutional layers after residuals. | ||
fc_args: Fully-connected arguments. | ||
''' | ||
self.crop_size = crop_size | ||
|
||
dim_x, dim_y, dim_in = shape | ||
self.final_size = 2 * (dim_x // self.crop_size) - 1 | ||
|
||
self.unfold = Unfold(dim_x, self.crop_size) | ||
self.refold = Fold(dim_x, self.crop_size) | ||
|
||
shape = (self.crop_size, self.crop_size, dim_in) | ||
self.conv_before_layers, self.conv_before_shape = self.create_conv_layers(shape, conv_before_args) | ||
|
||
self.res_layers, self.res_shape = self.create_res_layers(self.conv_before_shape, res_args) | ||
self.conv_after_layers, self.conv_after_shape = self.create_conv_layers(self.res_shape, conv_after_args) | ||
self.conv_after_shape = self.res_shape | ||
|
||
dim_x, dim_y, dim_out = self.conv_after_shape | ||
dim_r = dim_x * dim_y * dim_out | ||
self.reshape = View(-1, dim_r) | ||
self.fc_layers, _ = self.create_linear_layers(dim_r, fc_args) | ||
|
||
def create_res_layers(self, shape, block_args=None): | ||
'''Creates a set of residual blocks. | ||
Args: | ||
shape: input shape. | ||
block_args: Arguments for blocks. | ||
Returns: | ||
nn.Sequential: sequence of residual blocks. | ||
''' | ||
|
||
res_layers = nn.Sequential() | ||
block_args = block_args or [] | ||
|
||
for i, (conv_args, n_blocks) in enumerate(block_args): | ||
block = ResBlock(shape, conv_args=conv_args) | ||
res_layers.add_module('block_{}_0'.format(i), block) | ||
|
||
for j in range(1, n_blocks): | ||
shape = block.conv_shape | ||
block = ResBlock(shape, conv_args=conv_args) | ||
res_layers.add_module('block_{}_{}'.format(i, j), block) | ||
shape = block.conv_shape | ||
dim_x, dim_y = shape[:2] | ||
|
||
if dim_x != dim_y: | ||
raise ValueError('dim_x and dim_y do not match.') | ||
|
||
if dim_x == 1: | ||
shape = (self.final_size, self.final_size, shape[2]) | ||
|
||
return res_layers, shape | ||
|
||
def forward(self, x: torch.Tensor, return_full_list=False): | ||
'''Forward pass | ||
Args: | ||
x: Input. | ||
return_full_list: Optional, returns all layer outputs. | ||
Returns: | ||
torch.Tensor or list of torch.Tensor. | ||
''' | ||
x = self.unfold(x) | ||
|
||
conv_before_out = [] | ||
for conv_layer in self.conv_before_layers: | ||
x = conv_layer(x) | ||
if x.size(2) == 1: | ||
x = self.refold(x) | ||
conv_before_out.append(x) | ||
|
||
res_out = [] | ||
for res_layer in self.res_layers: | ||
x = res_layer(x) | ||
res_out.append(x) | ||
|
||
if x.size(2) == 1: | ||
x = self.refold(x) | ||
res_out[-1] = x | ||
|
||
conv_after_out = [] | ||
for conv_layer in self.conv_after_layers: | ||
x = conv_layer(x) | ||
if x.size(2) == 1: | ||
x = self.refold(x) | ||
conv_after_out.append(x) | ||
|
||
x = self.reshape(x) | ||
|
||
if return_full_list: | ||
fc_out = [] | ||
for fc_layer in self.fc_layers: | ||
x = fc_layer(x) | ||
fc_out.append(x) | ||
else: | ||
fc_out = self.fc_layers(x) | ||
|
||
if not return_full_list: | ||
conv_before_out = conv_before_out[-1] | ||
res_out = res_out[-1] | ||
conv_after_out = conv_after_out[-1] | ||
|
||
return conv_before_out, res_out, conv_after_out, fc_out |
Oops, something went wrong.